Enigmatic methane: Study solves a biogeochemical riddle from the ocean floor

Jan 26, 2014

Marine researchers from Bremen, along with a U.S. colleague, discovered the potential reasons for an unsolved mystery from beneath the seafloor - the study appeared online yesterday in Nature Geoscience. Their findings provide an explanation as to why methane in zones of turnover in the seafloor displays unusual isotopic signatures that have long puzzled researchers. The authors attribute the enigma to the process of methane oxidation by microorganisms, and suggest that this phenomenon may apply to other low-energy biogeochemical reactions that prevail in the marine realm.

Analyzing the carbon isotopic composition of within the seafloor, researchers from the MARUM and the Max-Planck-Institute for Marine Microbiology in Bremen came across an unusual phenomenon: In the zone where microorganisms oxidize methane along with reducing sulfate, there is no accumulation of the heavy isotope, 13C, in the remaining methane, as expected from traditional isotope behavior. Instead, they repeatedly find isotopically "light" methane - enriched in 12C - from a variety of such zones around the world. "These "light" methane signatures were previously interpreted as a fingerprint for ", says Marcos Yoshinaga, first-author and currently a guest investigator at the School of Arts, Sciences and Humanities, University of São Paulo. "In this zone of methane oxidation, however, we could not think of any other biogeochemical process supporting this production", adds senior-author Marcus Elvert from MARUM.

As a general rule, it has been proposed that during the process of methane oxidation there is a preferential loss of the lighter isotope from the starting reactant, with the remaining pool becoming isotopically "heavy" or enriched in 13C. The researchers used laboratory experiments to simulate microbial methane oxidation under similar conditions encountered in the seafloor. "The microbial collection of our Max-Planck-Institute with cultures of methane oxidizers from all over the world offers the possibility to faithfully reproduce the conditions found in nature" says Thomas Holler. And effectively: under low sulfate concentrations, as generally observed at methane oxidation zones in the seafloor, the formation of light, 12C-enriched methane occurred.

Methane possesses two major facets. Consisting of carbon and hydrogen atoms, it not only serves as energy source for microorganisms, but also plays a major role as a greenhouse gas. Marine sediments contain about 500–10,000 Gt of methane carbon. This reservoir is comparable in size to the amount of carbon in land biota, terrestrial soils, atmosphere and seawater combined, but thanks to the microbial methane oxidation in sediments devoid of oxygen, the oceans are responsible for less than two percent of the atmospheric emissions. "We have analyzed the stable carbon isotopic composition of methane in worldwide marine sediments" says John Pohlman from the US Geological Survey. Stable isotopes such as those of contain the same number of protons but are distinct in the number of neutrons and thus have different masses. They show no difference in the chemical behavior during reactions, however, in chemical reactions, a preferential turnover of the lighter isotope 12C is observed during biogeochemical processes.

In addition to the environmental data, the researchers tried to answer the question why methane enriched in the lighter isotope 12C forms at low sulfate contents. Operating close to the energetic limit of life, all components of the reaction are close to isotope equilibrium. "As a consequence, the lighter isotope 12C is channeled back to methane", says Gunter Wegener from the Max-Planck-Institute. "This result could be constrained by our biogeochemical model", adds Tobias Goldhammer from MARUM. The researchers concluded that such low-energy reactions may also occur in the cycling of other elements within the Ocean's interior. "This study highlights a novel insight into how certain Archaea adjust their metabolism to live under strong energy limitation in the deep-biosphere, and at the same time answers a central question of our project", says Kai-Uwe Hinrichs, co-author and leader of the European Research Council-funded Project DARCLIFE that supported this study.

Explore further: How climate change affects microbial life below the seafloor

More information: Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane, DOI: 10.1038/ngeo2069

Related Stories

Strange diet for methane consuming microorganisms

Nov 06, 2012

Methane is formed under the absence of oxygen by natural biological and physical processes, e.g. in the sea floor. It is a much more powerful greenhouse gas than carbon dioxide. Thanks to the activity of ...

Recommended for you

New study outlines 'water world' theory of life's origins

1 hour ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Agriculture's growing effects on rain

22 hours ago

(Phys.org) —Increased agricultural activity is a rain taker, not a rain maker, according to researchers at Pacific Northwest National Laboratory and their collaborators at the University of California Los ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

The Shootist
2 / 5 (4) Jan 26, 2014
Question: How much carbon bearing material must be burned to release all the CO2 that was in the atmosphere ~400 million years ago (Carboniferous era)?

Answer: All of it. All the coal. All the petroleum. All the CH4. Other other organic gases. All the organics in shale. All the limestone in the crust.

5 / 5 (1) Jan 29, 2014
Can you provide us with a calculation to back your denialist claim @Shooty?

More news stories

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.