Plugging water's effects in an Earth system model

Jan 10, 2014
An aerial view of crops in Southeastern Washington shows a form of agricultural irrigation called center pivot. Increased irrigation at industrial scales impacts the use and supply of fresh water around the globe, and scientists are working to understand how those impacts may change over regions and years, especially under the influence of climate change. Credit: Sam Beebe

(Phys.org) —Connecting several data pipes in a popular land model, a research team led by Pacific Northwest National Laboratory simulated how irrigation from both surface water and groundwater affects the Earth's water and energy budget. The surface water irrigation results varied depending on the observational sources used. Seasonal and year-to-year variations were large, and tended to be more pronounced in dry versus wet years. Even when the model was calibrated with agricultural observations, the difference between simulations showed a wide variability.

In a second study, the researchers introduced a method to represent irrigation from groundwater pumping for the first time. They found that groundwater-fed irrigation could lead to depletion of regional groundwater aquifers and unsustainable groundwater use in certain agricultural regions.

When the tap is turned, will there be water? As agricultural practices modernize and increase capacity around the world, is burdening water resources. World agriculture uses over 80 percent of fresh water sources, competing with other uses such as household, industrial and energy production. Irrigation and agricultural practices also have a substantial impact on the regional and local climate and the land's surface water system through evaporation and plant transpiration. In these studies, the researchers incorporated impacts of irrigation from both surface sourced and groundwater pumping in a land surface model to better understand how it affects the Earth and changes to the atmosphere. This work is an important step to understanding historical and future climate change.

The team included a groundwater pumping design coupled to its irrigation module in the Community Land Model (CLM4) and configured it to simulate land surface water and energy budgets at a detailed resolution. They used two sets of data sources for irrigation area maps: 1) The Global Map of Irrigated Area (GMIA), a map that represents the fractional irrigated area around the year 2000, which combines reports from the Food and Agriculture Organization of the United National and the U.N. Ministries of Agriculture, and land-use and land-cover data from the U.S. Geological Survey; and 2) a high-resolution irrigated area map for the continental United States that combines the Nadir Bidirectional Distribution Function Adjusted Reflectance (NBAR) data during 2001, gridded climate-based indices of the surface moisture status, and a map of cultivated areas. With this data, they performed numerical experiments, with and without irrigation or groundwater pumping, to understand the impact of irrigation on terrestrial water cycling and the sensitivity of the model results to various input datasets, parameter values and irrigation water source options.

They found that at seasonal to inter-annual time scales, the effects of irrigation on the surface energy budget were large and persistent-more pronounced in dry years than wet years. Even with model calibration that produced overall good agreement with the irrigation amounts from the National Agricultural Statistics Service, differences between the two irrigation area datasets still dominated the differences in the inter-annual variability of land surface responses to irrigation. Their results also show that changes in soil moisture content induced by groundwater-fed irrigation have significantly altered the water availability and distribution, with large effects on fluxes through surface-subsurface interactions.

Groundwater pumping can lead to fast depletion and unsustainable groundwater use in agricultural regions that have a low recharge rate (downward movement of to the aquifer) and a deep groundwater table. Therefore, large-scale pumping should be included in Earth system models to depict the effects of irrigation on the regional water cycle.

Both studies highlight the challenges of depicting realistic irrigation effects on climate and the need to include a more complete representation of , surface and subsurface hydrology, and water management in Earth system models.

The researchers will apply their findings to coupled land-atmosphere models that have incorporated observational data along with models that integrate river routing and management.

Explore further: Irrigation's impact on clouds and climate

More information: Leng G, M Huang, Q Tang, H Gao, and LR Leung. 2013. "Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States." Journal of Hydrometeorology, early online. DOI: 10.1175/JHM-D-13-049.1

add to favorites email to friend print save as pdf

Related Stories

Irrigation's impact on clouds and climate

Aug 05, 2013

With the simple act of watering a plant, humans alter the balance of moisture in soil and the climate. Atmospheric scientists at Pacific Northwest National Laboratory included irrigation in a climate model ...

Minimising water use, maintaining productivity

Jan 07, 2014

As the climate warms up, more and more farmers in Switzerland need to irrigate their crops. This is problematic because many rivers carry less water. If the increase in water use is limited, agricultural production will not ...

Recommended for you

US delays decision on Keystone pipeline project

Apr 18, 2014

The United States announced Friday a fresh delay on a final decision regarding a controversial Canada to US oil pipeline, saying more time was needed to carry out a review.

New research on Earth's carbon budget

Apr 18, 2014

(Phys.org) —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...