Eel River Observatory seeks clues to watershed's future

Jan 16, 2014 by Robert Sanders
A segment of the Eel River as it flows through the Angelo Coast Range Reserve in northern California. Credit: Christopher Woodcock

UC Berkeley scientists will receive $4,900,000 over the next five years to study the nearly 10,000 square kilometer Eel River watershed in Northern California and how its vegetation, geology and topography affect water flow all the way to the Pacific Ocean.

What the researchers uncover will help improve and modeling tools that can be used by state or regional decision makers to guide planning. Their discoveries may eventually allow scientists to predict the impact of changing climate and land use on future droughts, floods and supplies of water for drinking and agriculture.

Funded by the National Science Foundation, the Eel River Observatory is one of four new Critical Zone Observatories that received grants late last year, bringing the total number of such observatories to 10. All focus on the so-called "critical zone": the thin veneer of Earth, from the bottom of the groundwater to the tree tops, that is critical to aquatic and terrestrial life as the source of fresh water and site of soil formation from rock.

The Eel River is increasingly under pressure because of illegal marijuana cultivation, wine grape growing and other uses that extract water from the river and threaten one of the state's largest Coho salmon runs. In addition, warming waters in recent years have led to outbreaks of blue-green algae that produce enough toxins to kill dogs that drink the water. The river is currently stressed by the driest winter in decades.

"Whatever the agricultural use in the future, we will see increasing demands on a decreasing water resource," said observatory director William Dietrich, UC Berkeley professor of earth and and an expert on the processes that shape landscapes.

Other UC Berkeley faculty members involved in the new project include professors Jill Banfield and Inez Fung of earth and planetary science and of environmental science, policy and management; professor Jim Bishop of earth and planetary science; assistant professor Stephanie Carlson and professor Mary Firestone of , policy and management; professor Mary Power of integrative biology; and assistant professor Sally Thompson of civil and environmental engineering.

Eel River Observatory seeks clues to watershed’s future
Bill Dietrich (in hat) with students at his Angelo Reserve hillside study site, dubbed Rivendell after the land of the elves in Lord of the Rings. Credit: Mary Power

"The critical zone provides most of the ecosystem services on which society depends, such as clean water, food, nutrients, soil and carbon storage," said Roger Wakimoto, NSF assistant director for geosciences. "Researchers at the new CZO sites will investigate the past evolution and present state of the critical zone to predict how Earth's surface will evolve in response to future human activity and to . The results will provide the scientific basis for decision-making on how humans can best mitigate, adapt and respond to both slow and abrupt environmental changes."

From Hydrowatch to Critical Zone Observatory

For more than 20 years, Dietrich and other UC Berkeley scientists, including river ecologist Mary Power and atmospheric scientist Inez Fung, have studied the Eel River watershed within the Angelo Coast Range Reserve, part of the University of California's Natural Reserve System. A 2006-2010 project called Hydrowatch, funded by the W. M. Keck Foundation, allowed geologists, biologists, climate scientists, and chemists to place sensors over a small portion of the watershed to measure soil and rock moisture, water transport in trees and transpiration from leaves, in essence tracing the water and dissolved minerals and gases as they moved through the mixed hardwood-conifer ecosystem.

"The Keck Hydrowatch grant got us following the water, thinking about how topography affects the return of moisture to the atmosphere, and about the need to look inside hillslopes to understand atmospheric moisture, river flow and chemistry, ecosystems dynamics, and coastal ocean productivity," Dietrich said. "This NSF funding will allow us to expand our research to the entire Eel River watershed, totaling nearly 10,000 square kilometers, and begin to look at the neighboring Russian River watershed."

Dietrich refers to the water, energy, dissolved minerals and gases, sediments and organisms that move through landscapes as "currencies," analogous to the money that flows through a country's economy. The Eel River Observatory will focus on how the soil, forest and river "economy" interact with these currencies, including determining the flow maintained in rivers through drought, and the delivery of nutrients to the sea. Of particular interest is the so-far unexplored landscape beneath the hillside surface and below the soil mantle.

"Until now, we have been focused on this hillside in the Angelo Reserve, finding out how hills determine the return of gases to the atmosphere through plants, the amount of water available to plants and how much water is released to the stream," he said. "Now we will begin to look at how hillside dynamics influence what is delivered to the ocean, and how coastal productivity may be influenced by stream dynamics."

Key questions include:

  • How does the underlying rock affect how much water is stored underground for plant use, and how might that affect plants' susceptibility to seasonal drought and long-term climate change?
  • How do underground microbes influence gases – oxygen, carbon dioxide, and hydrogen sulfide – and dissolved minerals available to plants through their roots?
  • How does hillside storage of water affect the amount of water in the streams during California's dry summers?
  • Is there a tipping point beyond which climate change and land use change will irreversibly alter the river and coastal ecosystem?

"With anticipated increases in climate extremes, especially extended drought, and accelerating societal demand for , we will focus on filling the gaps in our knowledge that not only inhibit our ability to forecast the direction of future change in the watershed and its currencies, but even the magnitude of that change," Dietrich said.

Explore further: Europe to suffer from more severe and persistent droughts

add to favorites email to friend print save as pdf

Related Stories

Study: Columbia River glaciers, streamflow changes

Jan 16, 2014

(Phys.org) —The Columbia River is perhaps the most intricate, complex river system in North America. Its diverse landscape crosses international borders and runs through subarctic, desert and sea-level ...

Follow the water to understand drought

Oct 25, 2011

Water is a precious resource many take for granted until there is too little or too much. Scientists and engineers have positioned instruments at the Susquehanna Shale Hills Observatory at Pennsylvania State University to ...

Recommended for you

Predicting bioavailable cadmium levels in soils

16 hours ago

New Zealand's pastoral landscapes are some of the loveliest in the world, but they also contain a hidden threat. Many of the country's pasture soils have become enriched in cadmium. Grasses take up this toxic heavy metal, ...

Oil drilling possible 'trigger' for deadly Italy quakes

21 hours ago

Italy's Emilia-Romagna region on Tuesday suspended new drilling as it published a report that warned that hydrocarbon exploitation may have acted as a "trigger" in twin earthquakes that killed 26 people in ...

Snow is largely a no-show for Iditarod Trail Sled Dog Race

21 hours ago

On March 1, 65 mushers and their teams of dogs left Anchorage, Alaska, on a quest to win the Iditarod—a race covering 1,000 miles of mountain ranges, frozen rivers, dense forest, tundra and coastline. According ...

UN weather agency warns of 'El Nino' this year

21 hours ago

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Study shows less snowpack will harm ecosystem

22 hours ago

(Phys.org) —A new study by CAS Professor of Biology Pamela Templer shows that milder winters can have a negative impact both on trees and on the water quality of nearby aquatic ecosystems, far into the warm growing season.

User comments : 0

More news stories

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.