Disordered materials hold promise for better batteries

January 9, 2014 by David L. Chandler
Conventional layered lithium and transition metal cathode material (top) and the new disordered material studied by researchers at MIT (bottom) as seen through a scanning tunneling electron microscope. Inset images show diagrams of the different structures in these materials. (In the disordered material, the blue lines show the pathways that allow lithium ions to traverse the material.) Credit: MIT

Lithium batteries, with their exceptional ability to store power per a given weight, have been a major focus of research to enable use in everything from portable electronics to electric cars. Now researchers at MIT and Brookhaven National Laboratory have found a whole new avenue for such research: the use of disordered materials, which had generally been considered unsuitable for batteries.

In a rechargeable lithium-based battery, lithium ions—atoms that have given up an electron, and thus carry a net charge—are pulled out of the battery's cathode during the charging process, and returned to the cathode as power is drained. But these repeated round-trips can cause the electrode material to shrink and expand, leading to cracks and degrading performance over time.

In today's , those cathodes are usually made of an orderly crystalline material, sometimes in a layered structure. When slight deviations from that perfect order are introduced, the battery's efficiency generally goes down—so disordered materials have mostly been ignored in the search for improved battery materials.

But it turns out this correlation is far from universal: Certain kinds of disorder can provide a significant boost in cathode performance, the researchers have found through a combination of computer modeling and laboratory experiments. These surprising findings are reported this week in the journal Science, in a paper by MIT graduate student Jinhyuk Lee, professor of materials science and engineering Gerbrand Ceder, and four others.

Ceder describes the materials that can release and then reabsorb the lithium ions as a kind of "reversible sponge." In today's batteries, the cathodes are striated materials, made up of lithium layers alternating with oxides of transition metals. Scientists had thought the layering was necessary to provide a pathway for lithium to pass in and out of the cathodes without bumping into the transition metal oxide layer—"a channel with nothing in the way," as Ceder says.

Moreover, disorder "usually significantly reduces the mobility," Ceder says—and high mobility is essential for an efficient rechargeable battery.

But it turns out that a significant excess of lithium in the material changes things dramatically. In the traditional ordered structure, there is an exact balance between the number of lithium and metal atoms. "But if you get enough of a lithium excess," Ceder says, "you get new channels, and they can take over from the channels you close off."

While the disordered material with excess lithium produces irregular pathways, it turns out that these nevertheless can still act as efficient channels for the lithium ions. But such a material offers an extra bonus: While the irregular channels let lithium pass just as easily as it does in a layered material, in the disordered material the lithium ions don't push the layers out of shape.

The new material—in these experiments, lithium molybdenum chromium oxide—"has a very high dimensional stability," Ceder says. In most other lithium cathode materials, "as you pull the lithium in and out, it changes dimension, swelling or contracting." This swelling and contracting "causes all sorts of problems," including fatigue that can lead to cracking, he says.

While the dimensional changes in layered materials can be as much as 5 to 10 percent, he says, in the new disordered material it is only about 0.1 percent—"virtually zero."

Ceder stresses that his group's analysis of this specific compound "shows a new direction that we can take" in searching for even better materials, opening a whole new category of possibilities that had previously been ignored. While lithium molybdenum chromium oxide can hold and release significantly more than existing materials, it produces a lower voltage—meaning its overall performance is about the same as that of existing materials, he says.

Many new materials take decades to move from the laboratory to useful applications, but "we're hopeful we can do this in one or two years, to discover something better," Ceder says—most likely by using computational tools such as the Materials Project, which he co-founded.

Jeff Dahn, a professor of physics and atmospheric science at Dalhousie University in Nova Scotia who was not involved in this work, says, "These experimental results are very surprising." While it remains to be seen "whether this finding can be translated in similar experimental results in more practical ," he says, this research "is a nice combination of experiment and theory."

Explore further: Nanoball Batteries Could Charge Electric Cars in 5 Minutes

More information: Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, Science, www.sciencemag.org/content/early/2014/01/08/science.1246432

Related Stories

Nanoball Batteries Could Charge Electric Cars in 5 Minutes

March 12, 2009

(PhysOrg.com) -- Researchers at MIT have designed a new battery that can recharge devices about 100 times faster than conventional lithium ion batteries. The design could lead to electric car batteries that charge in 5 minutes ...

A systematic way to find battery materials

August 12, 2011

Lithium-ion batteries have become a leading energy source for everything from smartphones and laptops to power tools and electric cars, and researchers around the world are actively seeking ways to nudge their performance ...

Eavesdropping on lithium ions

July 8, 2013

(Phys.org) —Lithium ion batteries are at the energetic heart of almost all things tech, from cell phones to tablets to electric vehicles. That's because they are a proven technology, light, long-lasting and powerful. But ...

Inexpensive material boosts battery capacity

October 23, 2013

Battery-powered cars offer many environmental benefits, but a car with a full tank of gasoline can travel further. By improving the energy capacity of lithium-ion batteries, a new electrode made from iron oxide nanoparticles ...

Battery development may extend range of electric cars

January 9, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical hurdles. Now, ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Hitching a ride: Misfiring drugs hit the wrong targets

August 25, 2016

It probably isn't surprising to read that pharmaceutical drugs don't always do what they're supposed to. Adverse side effects are a well-known phenomenon and something many of us will have experienced when taking medicines.

Electron microscopy reveals how vitamin A enters the cell

August 25, 2016

Using a new, lightning-fast camera paired with an electron microscope, Columbia University Medical Center (CUMC) scientists have captured images of one of the smallest proteins in our cells to be "seen" with a microscope.


Adjust slider to filter visible comments by rank

Display comments: newest first

Whydening Gyre
not rated yet Jan 09, 2014
What is causing the expansion and contraction? Heat?
5 / 5 (2) Jan 09, 2014
No, most of those batteries use silicon as a substrate and it swells and shrinks as the lithium is absorbed and discharged from the molecular structure. It basically starts cracking apart. When it does that it also loses it's electrical connection. Another way of looking at it is the electrodes break apart into expensive but useless sand.
Whydening Gyre
not rated yet Jan 09, 2014
Wasn't aware that the lithium was in motion. Thought it was just electrons.
5 / 5 (1) Jan 10, 2014
As far as I know in just about every chemical electrolyte type battery you get some sort of +ions flowing in one direction and electrons flowing in the other.
5 / 5 (1) Jan 10, 2014
In terms of ratios, I wonder how much excess lithium we're talking about here.
not rated yet Jan 10, 2014
could this same idea work with the sulfur ion batteries? I know that they can carry way more charge per weight, but had severe swelling problems...if those were mitigated...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.