New discovery could stimulate plant growth and increase crop yields, researchers say

Jan 13, 2014

Scientists led by experts at Durham University have discovered a natural mechanism in plants that could stimulate their growth even under stress and potentially lead to better crop yields.

Plants naturally slow their growth or even stop growing altogether in response to adverse conditions, such as water shortage or high salt content in soil, in order to save energy.

They do this by making proteins that repress the growth of the plant. This process is reversed when plants produce a hormone - called Gibberellin - which breaks down the proteins that repress growth.

Growth repression can be problematic for farmers as crops that suffer from restricted growth produce smaller yields The research team, led by the Durham Centre for Crop Improvement Technology, and including experts at the University of Nottingham, Rothamsted Research and the University of Warwick, have discovered that plants have the natural ability to regulate their growth independently of Gibberellin, particularly during times of environmental stress.

They found that plants produce a modifier protein, called SUMO that interacts with the growth repressing proteins.

The researchers believe that by modifying the interaction between the modifier and the they can remove the brakes from , leading to higher yields, even when plants are experiencing stress.

The interaction between the proteins can be modified in a number of ways, including by conventional plant breeding methods and by biotechnology techniques.

The research was carried out on Thale Cress, a model for plant research that occurs naturally throughout most of Europe and Central Asia, but the scientists say the mechanism they have found also exists in crops such as barley, corn, rice and wheat.

Corresponding author Dr Ari Sadanandom, Associate Director of the Durham Centre for Crop Improvement Technology, in Durham University's School of Biological and Biomedical Sciences, said the finding could be an important aid in crop production.

Dr Sadanandom said: "What we have found is a molecular mechanism in which stabilises the levels of specific proteins that restrict growth in changing environmental conditions.

"This mechanism works independently of the Gibberellin hormone, meaning we can use this new understanding for a novel approach to encourage the plant to grow, even when under stress.

"If you are a farmer in the field then you don't want your wheat to stop growing whenever it is faced with adverse conditions.

"If we can encourage the crops to keep growing, even when faced by adverse conditions, it could give us greater yields and lead to sustainable intensification of food production that we must achieve to meet the demands on the planet's finite resources."

Explore further: Research improves understanding of how plants protect themselves from adverse environmental conditions

More information: Small Ubiquitin-like Modifier Protein SUMO enables plants to control growth independently of the phytohormone Gibberellin, Conti, L, et al, published in Developmental Cell, Volume 28, Issue 1, Manuscript 2850

Related Stories

How plants learned to respond to changing environments

Jul 12, 2007

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their ...

Using math to feed the world

Apr 17, 2012

In the race to breed better crops to feed the increasing world population, scientists at The University of Nottingham are using maths to find out how a vital plant hormone affects growth.

DELLAs bolster symbiosis in Green Revolution crops

Jan 08, 2014

(Phys.org) —Boyce Thompson Institute and Cornell researchers have identified a plant protein called DELLA that may lead to reducing phosphorus-fertilizer applications on farms and better plant growth in ...

Recommended for you

Getting a jump on plant-fungal interactions

Jul 29, 2014

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

robert_worthen
not rated yet Jan 16, 2014
Did you guys seriously just call it Thale Cress?