Dead star and distant black holes dazzle in X-rays

Jan 09, 2014 by Whitney Clavin
Can you see the shape of a hand in this new X-ray image? The hand might look like an X-ray from the doctor's office, but it is actually a cloud of material ejected from a star that exploded. NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has imaged the structure in high-energy X-rays for the first time, shown in blue. Lower-energy X-ray light previously detected by NASA's Chandra X-ray Observatory is shown in green and red. Credit: NASA/JPL-Caltech/McGill

(Phys.org) —Two new views from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, showcase the telescope's talent for spying objects near and far. One image shows the energized remains of a dead star, a structure nicknamed the "Hand of God" after its resemblance to a hand. Another image shows distant black holes buried in blankets of dust.

"NuSTAR's unique viewpoint, in seeing the highest-energy X-rays, is showing us well-studied objects and regions in a whole new light," said Fiona Harrison, the mission's principal investigator at the California Institute of Technology in Pasadena, Calif.

NuSTAR launched into space June 13, 2012, on a mission to explore the high-energy X-ray universe. It is observing black holes, dead and exploded stars and other extreme objects in our own Milky Way galaxy and beyond.

The new "Hand of God" image shows a nebula 17,000 light-years away, powered by a dead, spinning star called PSR B1509-58, or B1509 for short. The , called a pulsar, is the leftover core of a star that exploded in a supernova. The pulsar is only about 19 kilometers (12 miles) in diameter but packs a big punch: it is spinning around nearly seven times every second, spewing particles into material that was upheaved during the star's violent death. These particles are interacting with magnetic fields around the ejected material, causing it to glow with X-rays. The result is a cloud that, in previous images, looked like an open hand.

One of the big mysteries of this object, called a pulsar wind nebula, is whether the pulsar's particles are interacting with the material in a specific way to make it appear as a hand, or if the material is in fact shaped like a hand.

"We don't know if the hand shape is an optical illusion," said Hongjun An of McGill University, Montreal, Canada. "With NuSTAR, the hand looks more like a fist, which is giving us some clues."

A range of supermassive black holes lights up this new image from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. All of the dots are active black holes tucked inside the hearts of galaxies, with colors representing different energies of X-ray light. Credit: NASA/JPL-Caltech/Yale University

The second image from NuSTAR shows active, up to 16 billion light-years away in a well-studied patch of sky called the COSMOS field (for Cosmic Evolution Survey). Each dot is a voracious black hole at the heart of a galaxy, actively feeding off a surrounding disk of material. NASA's Chandra X-ray Observatory and other telescopes have identified many of the black holes in this field, but some are so heavily obscured in gas and dust that NuSTAR's higher-energy X-ray observations are needed to characterize and understand them. Astronomers hope to use NuSTAR to provide new demographics on the numbers, types and distances to black holes that populate our universe.

"This is a hot topic in astronomy," said Francesca Civano of Yale University, New Haven, Conn. "We want to understand how black holes grew in the past and the degree to which they are obscured." The ongoing research will help explain how and galaxies grow and interact with each other.

Explore further: The search for medium-sized black holes

Related Stories

NuSTAR delivers the X-ray goods

Sep 03, 2013

(Phys.org) —NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, is giving the wider astronomical community a first look at its unique X-ray images of the cosmos. The first batch of data from the black-hole ...

NASA's NuSTAR catches black holes in galaxy web

Jan 08, 2013

(Phys.org)—NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, set its X-ray eyes on a spiral galaxy and caught the brilliant glow of two black holes lurking inside.

The search for medium-sized black holes

Nov 27, 2013

Black holes can be petite, with masses only about 10 times that of our sun—or monstrous, boasting the equivalent in mass up to 10 billion suns. Do black holes also come in size medium? NASA's Nuclear Spectroscopic ...

NASA'S NuSTAR reveals flare from Milky Way's black hole

Oct 24, 2012

NASA's newest set of X-ray eyes in the sky, the Nuclear Spectroscopic Telescope Array (NuSTAR), has caught its first look at the giant black hole parked at the center of our galaxy. The observations show ...

Black hole naps amidst stellar chaos

Jun 11, 2013

(Phys.org) —Nearly a decade ago, NASA's Chandra X-ray Observatory caught signs of what appeared to be a black hole snacking on gas at the middle of the nearby Sculptor galaxy. Now, NASA's Nuclear Spectroscopic ...

A new view of the energetic universe

Dec 03, 2013

The Nuclear Spectroscopic Telescope Array, or NuSTAR, sees the high-energy X-rays emitted by the densest, hottest regions of the universe. The brainchild of Fiona Harrison, Caltech's Benjamin M. Rosen Professor ...

Recommended for you

Image: Galactic wheel of life shines in infrared

Oct 24, 2014

It might look like a spoked wheel or even a "Chakram" weapon wielded by warriors like "Xena," from the fictional TV show, but this ringed galaxy is actually a vast place of stellar life. A newly released ...

New window on the early Universe

Oct 22, 2014

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

User comments : 0