Climate study projects major changes in vegetation distribution by 2100

Jan 30, 2014 by Chris Branam

(Phys.org) —Climate researchers have calculated that the spread of plant species in nearly half the world's land areas could be affected by predicted global warming by the end of the century.

An international research team led by Song Feng, an atmospheric scientist at the University of Arkansas, used a scenario projecting an annual 3- to 10-degree increase in Celsius temperatures by 2100 to calculate that types will change in 46.3 percent of the global land area.

That scenario is referred to by climate scientists, according to Song, as "business as usual" because it assumes that "what we continue to do today we will do in the future, meaning that there will be no significant measures to reduce greenhouse-gas emissions that are warming the planet," he said.

The scenario has been adopted by the Intergovernmental Panel on Climate Change and calls for moderate to strong warming in the middle and high latitudes of the northern hemisphere and weaker warming in the tropics and the southern hemisphere.

"Climates are associated with certain types of vegetation," Feng said. "If the surface continues to get warmer, certain native species may no longer grow well in their climate, especially in higher latitudes. They will give their territory to other species. That is the most likely scenario."

Feng and colleagues in the United States and Asia published their findings in the January issue of the journal Global and Planetary Change, in a study titled "Projected climate regime shift under future from multi-model, multi-scenario CMIP5 simulations."

Their study examined shifts in climate regimes around the world using the Köppen-Trewartha climate classification, which is based on the concept that native vegetation is the best expression of climate. The researchers analyzed observations made from 1900 to 2010, and simulations from 1900 to 2100 from 20 participating in a project of the World Climate Research Programme.

"Changes in precipitation played a slightly more important role in causing shifts of climate type during the 20th century. However, the projected warming plays an increasingly important role and dominates shifts in climate type when the warming becomes more pronounced in the 21st century," said Feng, an assistant professor of geosciences in the J. William Fulbright College of Arts and Sciences.

"Those vast changes also imply that the global land area is experiencing vegetation-type conversions, with species distributions quite different from those that are familiar to us in modern civilization," he said.

Feng's study does not address exact changes to specific species, however. That area requires more research.

"This study is on the broad scale," he said. "It's showing the big picture."

Overall, the models consistently project increasing precipitation over the high latitudes of the northern hemisphere and reduced precipitation in southwestern North America, the Mediterranean, northern and southern Africa and all of Australia, according to the study.

Based on the projected changes in temperature and precipitation, the Köppen-Trewartha climate types would shift toward warmer and drier climate types. Regions of temperate, tropical and dry climate types are projected to expand, while regions of polar, sub-polar and subtropical climate types are projected to contract.

In 2011, Feng's research team predicted a reorganization of Arctic climates by the end of the 21st century. Their predictions show the tundra in Alaska and Canada giving way to trees, shrubs and plants typical of more southerly climates, as well as other global landscape changes.

The 2011 study was one of the first to apply a specific climate classification system to a comprehensive examination of climate changes throughout the Arctic by using both observations and a collection of projected future climate changes.

Explore further: More droughts, heavier rains in warmer Europe, study reports

More information: Song Feng, Qi Hu, Wei Huang, Chang-Hoi Ho, Ruopu Li, Zhenghong Tang, "Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations," Global and Planetary Change, Volume 112, January 2014, Pages 41-52, ISSN 0921-8181, dx.doi.org/10.1016/j.gloplacha.2013.11.002

add to favorites email to friend print save as pdf

Related Stories

Climate change's impact on Arctic regions by 2099: study

Mar 14, 2011

(PhysOrg.com) -- Imagine the vast, empty tundra in Alaska and Canada giving way to trees, shrubs and plants typical of more southerly climates. Imagine similar changes in large parts of Eastern Europe, northern ...

Recommended for you

More, bigger wildfires burning western US, study shows

16 hours ago

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

User comments : 0

More news stories

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...