Ыcientists discover gene regulation is dependent on protein ANP32E

Jan 23, 2014

A team of scientists from the National Cancer Centre Singapore (NCCS), the Institut de Génétique et de Biologie Moleculaire et Cellulaire (Strassbourg France), and the Institut Albert Bonniot (Grenoble, France) have made an important finding on how genes are regulated. This study will be released in the January 30th, 2014 print issue of the journal Nature.

The discovery used a genetically modified mouse that was developed by Dr Patrick Reilly, a Senior Scientist in the Laboratory of Inflammation Biology headed by Prof Tak Wah Mak at the NCCS, to demonstrate that the architecture of DNA in the living cell is maintained in part by a protein called ANP32E. The ANP32E or Acidic leucine-rich nuclear phosphoprotein 32 family member E is a protein in humans.

"While DNA is normally represented as a two strands forming a helix, the actual amounts of DNA in the cell mean that these strands must be compacted into complex structures, called chromatin, which restricts the DNA volume while still allowing access to the encoded information, " said Dr Patrick Reilly, a Senior Scientist at NCCS. Errors in chromatin structure are found in a wide array of developmental diseases as well as in all types of cancers. By understanding the processes controlling chromatin structure, we hope to improve our tools for timely regulation of specific genes, thus reversing the impact of many diseases and developing novel anti-cancer agents.

In recent decades, scientists have found that proper regulation of genes depends, in part, on these structures. In the study, the researchers in France began studying a specific component of chromatin called H2A.Z, which has been previously shown as important in controlling specific regions of DNA expression. They found that ANP32E, a protein that Dr. Reilly has been studying at NCCS for several years, had the ability to strip H2A.Z away from DNA, thus allowing altered gene expression. In collaboration, Dr Reilly was able to provide a mouse, which he generated to specifically lack ANP32E and together they found that cells lacking ANP32E lacked the proper chromatin structure. Since Dr Reilly is studying ANP32E as a possible therapeutic target based on its unusual composition, this finding could reveal novel therapeutic strategies in the long run.

Explore further: Important discovery for the diagnosis of genetic diseases

Journal reference: Nature search and more info website

Provided by National Cancer Centre Singapore

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Important discovery for the diagnosis of genetic diseases

Jan 16, 2014

A study conducted by Marie Kmita's team at the IRCM, in collaboration with Josée Dostie at McGill University, shows the importance of the chromatin architecture in controlling the activity of genes, especially those required ...

Unspooling DNA from nucleosomal disks

May 23, 2013

The tight wrapping of genomic DNA around nucleosomes in the cell nucleus makes it unavailable for gene expression. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich now describes a mechanism that allows chromosomal ...

DNA-altering enzyme is essential for blood cell development

Jun 10, 2013

The expression of specific genes is partially dictated by the way the DNA is packed into chromatin, a tightly packed combination of DNA and proteins known as histones. HDAC3 is a chromatin-modifying enzyme that regulates ...

Recommended for you

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.