Organic chemistry: Carbon dioxide tamed

Jan 15, 2014
Organic chemistry: Carbon dioxide tamed
The carbon dioxide produced by burning fossil fuels could become a useful chemical reagent. Credit: tainkm/iStock/Thinkstock

Carbon dioxide has become notorious as a troublesome greenhouse gas produced by burning fossil fuels. Now, this gas could also offer a cheap, abundant and nontoxic source of carbon for the chemical reactions that synthesize products such as plastics and pharmaceuticals.

Only a few industrial processes currently use carbon dioxide as a reagent because it takes a lot of energy to break its strong bonds. For example, to synthesize salicylic acid, a precursor of aspirin, carbon dioxide must be squeezed to 100 times atmospheric pressure and the reaction mixture heated to 125 ºC.

Hung Duong of the A*STAR Institute of Chemical and Engineering Sciences in Singapore and co-workers have shown that a copper catalyst can incorporate carbon dioxide into organic molecules under much milder conditions. The commercially available catalyst consists of a copper atom joined to a bulky ligand called 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr).

Some reactions involving carbon dioxide require high-energy starting materials that contain reactive metals such as lithium or magnesium. However, these metals often destroy other sensitive chemical groups in the molecule during the reaction. Milder starting materials that contain tin tend to be highly toxic, "so we looked at the use of more environmentally benign organoborons," says Duong.

The researchers tested a range of molecules that feature a carbon–carbon double bond close to a boron-containing chemical group. They assumed that the copper catalyst works by knocking the boron group off the molecule and briefly taking its place so that it can shepherd carbon dioxide into the right position to bond with the molecule. The products of the reaction contain a carbon–carbon double bond and a carboxylic acid group, arranged in a very predictable pattern. "These are highly versatile building blocks for organic synthesis," explains Duong.

The reaction generally produced good yields of products when run at just 70 ºC and , although it was less successful in those cases where particularly large chemical groups were attached to one end of the starting material.

The reaction also needed relatively large amounts of catalyst – roughly one catalyst molecule for every 10 to 20 molecules of the starting material. "That amount is still too high for industrial use and needs further improvement," says Duong.

His team now aims to expand the range of reactions that their catalyst can assist. "We are currently looking at exploiting the high reactivity of the copper catalyst toward to prepare other valuable organic compounds under mild conditions," he says.

Explore further: Cheap metals can be used to make products from petroleum

More information: Duong, H. A., Huleatt, P. B., Tan, Q.-W. & Shuying, E. L. Regioselective copper-catalyzed carboxylation of allylboronates with carbon dioxide. Organic Letters 15, 4034–4037, 2013. dx.doi.org/10.1021/ol4019375

add to favorites email to friend print save as pdf

Related Stories

Cheap metals can be used to make products from petroleum

Oct 21, 2013

The ancient alchemists sought to transform base metals, like lead, into precious gold. Now a new process developed at the University of Illinois at Chicago suggests that base metals may be worth more than their weight in ...

Process holds promise for production of synthetic gasoline

Dec 02, 2013

A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

Recommended for you

A greener source of polyester—cork trees

15 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

18 hours ago

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...