CARS microscopy on its way to clinical translation

Jan 10, 2014 by K. Maedefessel-Herrmann

Coherent anti-Stokes Raman scattering microscopy offers noninvasive label-free imaging, high sensitivity, and chemical specificity, which makes it an attractive alternative to histopathology for diagnosis. For clinical translation, some technical barriers still have to be overcome using advanced features and schemes.

Stained histopathology is currently the gold standard for disease diagnosis but remains a subjective practice on processed tissue, taking from hours to days. More quantitative and rapid analysis could be provided by near-infrared Raman microspectroscopy, an attractive alternative which offers a noninvasive assay of the tissue without external staining or labeling. Since pathological changes are often preceded by microscopic chemical alterations, the obtained Raman hyperspectral image and data of the tissue can potentially be used as an early-stage phenotypic set of markers for tissue pathology. However, the weak Raman scattering of common biomolecules necessitates a long image acquisition time of several hours. Coherent anti-Stokes Raman scattering (CARS) microscopy, a nonlinear optical variant of Raman microspectroscopy, holds the promise to shorten this time below minutes. Yet, there are still some restraints that limit the clinical translation of CARS microscopy. Although each of them can be overcome with advanced features, the implementation of one or a small number of these features often introduces more tradeoffs than benefits.

In a review article, Haohua Tu and Stephen A. Boppart from the University of Illinois at Urbana-Champaign (USA) discuss the six most outstanding technical barriers and six advanced features, including interferometry, that can be independently added into a standard but high-performance scheme to overcome these barriers. They also outline a strategy that would integrate multiple advanced features to overcome these barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring.

By recognizing CARS spectroscopy vs. CARS imaging as the most fundamental tradeoff, the authors suggest that clinical CARS microscopy should be optimized to perform either Raman spectroscopy with a broad spectral coverage, or Raman imaging at one or a few discrete Raman frequencies, but not both. The former could be realized by integrating all of the six advanced features discussed, resulting in a highly sensitive version of spontaneous Raman microscopy that could rapidly identify new Raman biomarkers of medical significance from thin ex vivo tissue sections. The latter would adaptively integrate some of the advanced features, depending on the identified Raman biomarkers and the technical issue of fiber-based miniaturization, to perform in vivo molecular imaging in patients.

Explore further: Molecular pathology via IR and Raman spectral imaging

More information: Haohua Tu and Stephen A. Boppart, Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation, J. Biophotonics 7:1-2, 9-22 (2014); DOI dx.doi.org/10.1002/jbio.201300031

add to favorites email to friend print save as pdf

Related Stories

Molecular pathology via IR and Raman spectral imaging

Dec 10, 2013

IR and Raman spectral imaging can distinguish between tissue types, disease types and stages, and even identify the primary tumors from spectral patterns observed in metastatic cells. Furthermore, these techniques ...

The need for speed

May 29, 2012

Coherent Raman scattering methods have one key advantage over spontaneous Raman microscopy: speed. The (sub-)microsecond pixel dwell times offered by narrowband CRS imaging methods have initiated a new era ...

Watching the heart beat of molecules

Oct 17, 2013

A team of scientists around Prof. Theodor W. Hänsch and Dr. Nathalie Picqué at the Laser Spectroscopy Division of the Max Planck Institute of Quantum Optics (Garching), in a collaboration with the Ludwig-Maximilians-Universität ...

Researchers photograph active ingredient in cannabis plants

Apr 17, 2013

Researchers from the University of Twente's MESA+ and MIRA research institutes have succeeded in visualizing THC, the active ingredient of cannabis, in intact plant structures. The substance is mainly found in trichomes (fine ...

Amplifying our vision of the infinitely small

Dec 02, 2013

Richard Martel and his research team at the Department of Chemistry of the Université de Montréal have discovered a method to improve detection of the infinitely small. Their discovery is presented in the ...

Recommended for you

Nanomaterials to preserve ancient works of art

23 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

23 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.