What your candles and TV screen have in common

Jan 14, 2014
What your candles and TV screen have in common

The next time you light a candle and switch on your television ready for a relaxing evening at home, just think. These two vastly different products have much more in common than you might imagine.

Research recently carried out by Prof Tanja Schilling and associates, Muhammad Anwar and Francesco Turci, at the Physics and Material Science Research Unit of the University of Luxembourg made this surprising connection, which works as follows.

In the process of refining crude oil, wax is produced as a by-product. Paraffin wax is widely used in many ways – candles, lubricants, paint, medicines and even many of our best loved beauty products.

The crystallisation process of paraffin has been widely studied on a macroscopic level, but very little has been known on the microscopic level – until now. Prof Schilling and her colleagues made a study of paraffin at the individual molecular level and examined the process by which molten wax crystallises, with startling results.

They found that wax molecules align in a similar way to molecules in liquid crystal before they slide into their final positions and that this closely resembles the processes that are used in liquid crystal display (LCD) technology, like your television screen.

"This research will be of value to the plastics industry as the polymers which make up plastics are long-chain versions of the molecules in wax," says Prof Schilling.

Almost every plastic product we use each day is created via the injection moulding process. This a method whereby molten plastic is injected into a mould and cooled to form the product required. Prof Schilling's research adds important knowledge as to how to control any potential defects in this process.

Explore further: New molecule puts scientists a step closer to understanding hydrogen storage

More information: The full scientific article containing details of this research was published in The Journal of Chemical Physics and can be viewed here: scitation.aip.org/content/aip/… 21/10.1063/1.4835015.

add to favorites email to friend print save as pdf

Related Stories

Cheap beads offer alternative solar-heating storage

Dec 02, 2011

A cheap material that can store heat energy collected from the sun during the day that can be released slowly over night has been developed by researchers in the India. The material based on paraffin wax and stearic acid ...

New calculations solve an old problem with DNA

Dec 21, 2012

The normal (B-form) DNA will switch to left-handed DNA when it is physically twisted, or when a lot of salt is added to the solution. Researchers at the University of Luxembourg were able to accurately calculate for the ...

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0