Study on bacteria-invading virus yields new discoveries

Jan 10, 2014

Innovative work by two Florida State University scientists that shows the structural and DNA breakdown of a bacteria-invading virus is being featured on the cover of the February issue of the journal Virology.

Kathryn Jones and Elizabeth Stroupe, both assistant professors in the Department of Biological Science, have deconstructed a type of virus called a , which infects bacteria. Their work will help researchers in the future have a better understanding of how the virus invades and impacts bacteria, and could be particularly useful for the agriculture industry.

"It turns out there are a lot of novel things about it," Jones said.

Until now, there was little known about this particular bacteriophage, called the ϕM12, which infects a nitrogen-fixing bacterium called Sinorhizobium meliloti.

Jones focused on the sequencing the DNA of ϕM12 and analyzing its evolutionary context, while Stroupe looked at its overall physical structure.

"The bacteriophage is really just a tool for studying the bacterium," Stroupe said. "No one thought to sequence it before."

That tool, Stroupe said, will give scientists more insight into the basic functions of the ϕM12 bacteriophage. ϕM12 is the first reported bacteriophage to have its particular combination of DNA sequences and the particular shape of its protein shell. Understanding both the DNA and structure can provide an understanding of the proteins a bacteriophage produces and how it chooses the bacteria it invades.

In the case of ϕM12, this could be particularly useful in the future for the agriculture community and seed companies. Important crop plants depend on by the that is preyed upon by this phage. Nitrogen fixation is the process by which abundant nitrogen gas in the atmosphere is converted to the scarce soil resources ammonia and nitrate.

Explore further: Bacteria to aid sutainable sugarcane production

More information: Jones and Stroupe's work, divided into two articles, will be featured on the cover of Virology. One, authored primarily by Jones and an undergraduate honors thesis student, Tess Brewer, focuses on the genetic makeup of the virus, while the other by Stroupe and colleagues, examines the physical structure.

Related Stories

Team discovers new form of virus reproduction

Oct 17, 2013

Each small step that Science takes to discover how viruses infect cells is always very valuable to researchers and society, since it provides relevant information to fight infections.

Bacteriophages battle superbugs

Jul 18, 2013

IFR microbiologists are reinvigorating a way of battling C. difficile infections that they hope will help overcome the growing problem of antibiotic resistant superbugs in hospitals.

New immune system discovered

May 20, 2013

(Medical Xpress)—A research team, led by Jeremy Barr, a biology post-doctoral fellow, unveils a new immune system that protects humans and animals from infection.

Recommended for you

Researchers discover new strategy germs use to invade cells

10 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

10 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0