Atomic-scale catalysts may produce cheap hydrogen

Jan 22, 2014
North Carolina State University researchers found MoS2 thin films are effective catalysts for hydrogen production. Credit: Linyou Cao

Researchers at North Carolina State University have shown that a one-atom thick film of molybdenum sulfide (MoS2) may work as an effective catalyst for creating hydrogen. The work opens a new door for the production of cheap hydrogen.

Hydrogen holds great promise as an energy source, but the production of hydrogen from water electrolysis – freeing hydrogen from water with electricity – currently relies in large part on the use of expensive platinum catalysts. The new research shows that MoS2 atomically are also effective catalysts for and – while not as efficient as platinum – are relatively inexpensive.

"We found that the thickness of the thin film is very important," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work. "A thin film consisting of a single layer of atoms was the most efficient, with every additional layer of atoms making the catalytic performance approximately five times worse."

The effect of the thin films' thickness came as a surprise to researchers, because it has long been thought that catalysis normally takes place along the edges of the material. Because thin films have very little 'edge,' conventional wisdom held that thin films were essentially catalytically inactive.

But the researchers discovered that a material's thickness is important because the thinner the MoS2 thin film is, the more conductive it becomes – and the more conductive it becomes, the more effective it is as a catalyst.

"The focus has been on creating catalysts with a large 'edge' side," Cao says. "Our work indicates that researchers may want to pay more attention to a 's conductivity."

Cao developed the technique for creating high-quality MoS2 thin films at the atomic scale in 2013. The current production of hydrogen from the atomically thin film is powered by electricity. His team is working to develop a solar-powered water-splitting device that uses the MoS2 thin films to create .

Explore further: New technique may open up an era of atomic-scale semiconductor devices

More information: The paper, "Layer-dependent Electrocatalysis of MoS2 for Hydrogen Evolution," is published online in Nano Letters.

Related Stories

Better catalyst for solar-powered hydrogen production

Dec 04, 2013

(Phys.org) —Hydrogen is a "green" fuel that burns cleanly and can generate electricity via fuel cells. One way to sustainably produce hydrogen is by splitting water molecules using the renewable power of ...

Team sheds new light on solar water-splitting process

Dec 02, 2013

With the help of a new method called "dual-electrode photoelectrochemistry," University of Oregon scientists have provided new insight into how solar water-splitting cells work. An important and overlooked ...

Recommended for you

Thinnest feasible nano-membrane produced

16 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

18 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...