Project aims to produce liquid transportation fuel from methane

Jan 16, 2014 by Dan Krotz
From left, Christer Jansson, John Tainer, and Steve Yannone at the SYBILS beamline at Berkeley Lab's Advanced Light Source. They're among a team of scientists working to make liquid transportation fuel from methane.

(Phys.org) —How's this for innovative: A Berkeley Lab-led team hopes to engineer a new enzyme that efficiently converts methane to liquid transportation fuel.

"There's a lot of methane available, and we want to develop a new way to harness it as an energy source for vehicles," says Christer Jansson, a biochemist in Berkeley Lab's Earth Sciences Division who heads the effort.

Methane is the main component of and biogas from wastewater treatments and landfills. Another source is "stranded natural gas," which is currently flared or vented at remote oil fields, and which represents an enormous unused energy resource.

But methane has disadvantages. It remains a gas at surface temperatures and pressure, which makes it problematic and costly to transport. Large portions of the known natural gas reserves are located in remote areas of the world. And methane is a , with a global warming potential more than 20 times that of carbon dioxide.

Methane can be converted to liquid hydrocarbons by thermochemical processes. But these processes are both energy intensive and often non-selective.

So Jansson and colleagues are turning to biology. There are bacteria in nature that gobble up methane and convert it to chemicals that can be fashioned into fuel. These bacteria, called methanotrophs, have an that serves their needs just fine. Unfortunately, the enzyme doesn't produce chemicals with the efficiency needed to make transportation fuels.

The scientists aim to develop a new way to harness methane as an energy source for vehicles. One untapped source could be stranded natural gas, which is currently flared or vented at oil fields.

Scientists are working to make this enzyme more efficient, but Jansson's team is taking a new approach. They're starting with a different enzyme that ordinarily takes in carbon dioxide. Its structure is relatively simple and well understood, making it an ideal platform to tinker with, which in this case means engineering the enzyme to consume methane instead of carbon dioxide and release a product that can feed into a pathway for fuel synthesis.

This new enzyme, a methylase, could be added to bacteria for production of different fuels such as butanol and biodiesel. In practice, these specially designed bacteria would be placed in a bioreactor. Simply add methane—and out comes liquid transportation fuel. Repeat the cycle over and over for more fuel.

That's the idea. Getting there will require a team of Berkeley Lab scientists and industrial partners.

John Tainer's and Steve Yannone's groups in Berkeley Lab's Life Sciences Division will explore how the enzyme can be tweaked so that it binds with methane. They'll use computational analysis to map the structural changes needed so that the enzyme has a shot at breaking methane's bonds and snaring the molecule. They'll also study the enzyme at Berkeley Lab's Advanced Light Source, where the SIBYLS synchrotron beamline combines X-ray scattering with X-ray diffraction capabilities. This will help the scientists determine the enzyme's functional 3-D structure.

In addition, Novici Biotech, a California-based industrial partner, will create tens of thousands of variants of the enzyme with its proprietary synthetic biology technology. Romy Chakraborty of Berkeley Lab's Earth Sciences Division and scientists from the U.S. Department of Energy's Joint BioEnergy Institute will assist in analyzing these variants to identify those with the best characteristics.

Ideally, each step will circle closer to a new enzyme that's very efficient at converting methane to an oxidized product.

"Once a functional methylase has been constructed, we need to engineer a new metabolic cycle that takes up methane and regenerates the co-substrate," says Jansson. "Just like the Calvin-Benson cycle, but with assimilation of methane instead of ."

"This will take some time," Jansson says. "But if we're successful, the methylase can be installed into various microorganisms such as E. coli, yeast, and cyanobacteria and used on a large scale to produce liquid fuel from in natural gas or other sources."

Two other industrial partners, Kiverdi, Inc. and Microvi Biotechnologies, are also involved in the project to optimize gas bioprocessing and other culture conditions for growing the engineered cells. Kiverdi is also heading the business analysis and tech transfer part of the project with Berkeley Lab business specialists Andrea Schoeller and Bill Shelander.

Explore further: LLNL partnership with Calysta works to convert natural gas to liquid fuel

More information: The $3.5 million project is funded by DOE's Advanced Research Projects Agency-Energy (ARPA-E), which focuses on "high-potential, high-impact energy technologies that are too early for private-sector investment. The project is one of 15 awardees announced by ARPA-E in September, 2013 in a category called REMOTE, which is short for "Reducing Emissions using Methanotrophic Organisms for Transportation Energy."

Related Stories

Speeding the search for better methane capture

Apr 24, 2013

(Phys.org) —Like the Roman god Janus, methane presents Earth's atmosphere with two situational faces. As the main component of natural gas, methane when burned as a fuel produces less carbon dioxide than ...

Synthetic natural gas from excess electricity

Jan 06, 2014

"Power to gas" is a key concept when it comes to storing alternative energy. This process converts short-term excess electricity from photovoltaic systems and wind turbines into hydrogen. Combined with the ...

Methane hydrates and global warming

Jan 02, 2014

Methane hydrates are fragile. At the sea floor the ice-like solid fuel composed of water and methane is only stable at high pressure and low temperature. In some areas, for instance in the North Atlantic ...

Recommended for you

Sculpting tropical peaks

9 hours ago

Tropical mountain ranges erode quickly, as heavy year-round rains feed raging rivers and trigger huge, fast-moving landslides. Rapid erosion produces rugged terrain, with steep rivers running through deep ...

Volcano expert comments on Japan eruption

10 hours ago

Loÿc Vanderkluysen, PhD, who recently joined Drexel as an assistant professor in Department of Biodiversity, Earth and Environmental Science in the College of Arts and Sciences, returned Friday from fieldwork ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Jan 16, 2014
Might want to check out this Scientifically Engineered Hydrocarbon Fuel website.

http://colossalstorage.net/API
Birger
not rated yet Jan 16, 2014
Excellent initiative!
The Shootist
5 / 5 (2) Jan 16, 2014
Large portions of the known natural gas reserves are located in remote areas of the world.


Like North Dakota and Tejas.

We are going to increase the American NG output by 500% over the next 25 years. Drill here, drill now! F*uck Barack Obama and all the minions and supporters he rode to get here.