Wheat hybrid holds potential for drenched, saline conditions

Dec 23, 2013 by Jessica Theunissen
Wheat hybrid holds potential for drenched, saline conditions
The wheat-cross was not of a bread-wheat quality and was more likely to be of feed grain quality. Credit: Dag Terje Filip Endresen

Wheat tolerance to salinity and waterlogging has been improved through genetic cross-breeding, according to a study by UWA scientists.

The study, published in the Functional Plant Biology journal, investigated ways to improve the salt and waterlogging tolerance of wheat (Triticum aestivum L.) through hybridisation with sea barleygrass (Hordeum marinum Huds.).

Sea barleygrass is a wild relative of wheat and is found growing naturally in salt marshes.

"[Sea barleygrass] has possibly the highest tolerance to salinity and waterlogging within the Triticeae," the authors write.

"[It] can withstand the combined effects of salinity and waterlogging by maintaining better leaf ion regulation whereas wheat is more sensitive to the interactive effects of these two stresses."

Wheat is moderately tolerant of but is sensitive to waterlogging which lowers the availability of O2 in the root zone.

The researchers crossed bread wheat with the wild relative to create an amphiploid containing both genomes. The resulting H. marinum-wheat amphiploids were then tested to determine whether they possessed the desirable traits. The cross had lower leaf concentrations of sodium and chlorine and a higher ratio of potassium to sodium, which is associated with , compared to its wheat parent. However, it was not as salt tolerant as sea barleygrass.

The researchers found several disadvantages to using this particular cross: The wheat-cross was not of a bread- quality and was more likely to be of feed grain quality. The cross was also found to have low fertility.

UWA School of Plant Biology Winthrop Professor and co-author Timothy Colmer says that low fertility is a key issue that will impact on whether there is a practical or commercial use for the cross in agriculture.

W/Prof Colmer says that undesirable traits such as low fertility may be able to be bred out through various breeding strategies.

While there are undesirable traits there is the advantage of using an adaptive wild relative, which is a new approach, he says.

"Salinity is increasing over large parts of the world's arable land," the authors write. "Salinity impacts adversely on crops by reducing water availability and causing ion toxicity.

"We need to have an integrated approach to the revegetation of saline areas… a salt tolerant crop is not going to solve the whole problem but it has a place," W/Prof Colmer says.

Explore further: The origin of the language of life

More information: Alamri Saud A., Barrett-Lennard Edward G., Teakle Natasha L., Colmer Timothy D. (2013). "Improvement of salt and waterlogging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents." Functional Plant Biology 40, 1168–1178. dx.doi.org/10.1071/FP12385

add to favorites email to friend print save as pdf

Related Stories

New research project to produce salinity tolerant crops

Nov 14, 2013

A new research project announced today will identify how bread wheat and barley can tolerate saline soils. The project, being funded by the Grains Research and Development Corporation will deliver resources to breeders for ...

Researchers develop highest yielding salt tolerant wheat

Apr 15, 2010

(PhysOrg.com) -- In a major breakthrough for wheat farmers in salt-affected areas, CSIRO researchers have developed a salt tolerant durum wheat that yields 25 per cent more grain than the parent variety in ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.