Light variation drives community structure of a hypersaline microbial mat

Dec 10, 2013
Scientists expected saline changes as driver; results further understanding of microbial communities
Scientists examined microbial community mats from Hot Lake in north-central Washington to study community responses to environmental changes.

When scientists at Pacific Northwest National Laboratory took samples of a microbial mat community from a hypersaline lake to study community responses to environmental changes, they expected to find that the changing salinity drives large changes in the types of microbes populating the mat.

"Instead," said Dr. Steve Lindemann, PNNL microbiologist and the study lead, "we found that the microorganisms composing the mat remained relatively stable throughout the year, even though the lake's salinity varied more than tenfold during that period. Furthermore, using ecological analysis coupled with the environmental metadata, we concluded that seasonal variation in the availability of energy from light, rather than salinity, exerted the most influence on the mat community's composition."

This study, which was conducted with collaborators at the Department of Energy Joint Genome Institute and Washington State University, used samples from Hot Lake, located in northcentral Washington State. The work appeared in Frontiers in Microbiology and was featured on the journal's website.

These results shed light on the ecological drivers of the mat's seasonal assembly and disassembly cycles in the face of . The unexpected importance of light availability further suggests that interspecies interactions within , especially those between cyanobacteria and heterotrophs, may lend community resistance to environmental stress such that the community's tolerance is greater than the sum of its parts. This brings scientists closer to a predictive understanding of microbial community assembly, which, in turn, could further the ability to engineer stable, resilient communities capable of carrying out desired transformations and bioprocesses even when exposed to destabilizing environmental conditions or invasive organisms.

Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances.

The researchers examined space and time variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by using short-read 16S rRNA sequencing in tandem with near-full-length 16S rRNA sequences.

The scientists are now working to deduce the rules by which the Hot Lake mat and mat-derived simplified communities assemble by investigating the natural system in the field and under controlled conditions in the laboratory.

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: Lindemann SR, JJ Moran, JC Stegen, RS Renslow, JR Hutchison, JK Cole, AC Dohnalkova, J Tremblay, K Singh, SA Malfatti, F Chen, SG Tringe, H Beyenal, and JK Fredrickson. 2013. "The Epsomitic Phototrophic Microbial Mat of Hot Lake, Washington: Community Structural Responses to Seasonal Cycling." Frontiers in Microbiology, Special Topic on Systems Biology and Ecology of Microbial Mat Communities 4:323. DOI: 10.3389/fmicb.2013.00323.

Related Stories

Chicago water under the microscope

Dec 03, 2013

Scientists from the U.S. Department of Energy's Argonne National Laboratory are partnering with the Metropolitan Water Reclamation District of Greater Chicago (MWRD) to find out the typical sources and distribution ...

Novel archaea found in geothermal microbial mats

Nov 21, 2012

(Phys.org)—Our oldest national park may hold answers to questions about the activities of microbial communities that, in turn, may help in developing bioenergy technologies or safely storing carbon dioxide. ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.