Can we turn unwanted carbon dioxide into electricity?

Dec 12, 2013 by Pam Frost Gorder

Researchers are developing a new kind of geothermal power plant that will lock away unwanted carbon dioxide (CO2) underground—and use it as a tool to boost electric power generation by at least 10 times compared to existing geothermal energy approaches.

The technology to implement this design already exists in different industries, so the researchers are optimistic that their new approach could expand the use of geothermal energy in the U.S. far beyond the handful of states that can take advantage of it now.

At the American Geophysical Union meeting on Friday, Dec. 13, the research team debuted an expanded version of the design, along with a computer animated movie that merges advances in science with design and cognitive learning techniques to explain the role that energy technologies can have in addressing climate change.

The new power plant design resembles a cross between a typical and the Large Hadron Collider: It features a series of concentric rings of horizontal wells deep underground. Inside those rings, CO2, nitrogen and water circulate separately to draw heat from below ground up to the surface, where the heat can be used to turn turbines and generate electricity.

The design contrasts with conventional geothermal plants, explained study co-author Jeffrey Bielicki, assistant professor of energy policy in the Department of Civil, Environmental and Geodetic Engineering and the John Glenn School of Public Affairs at The Ohio State University.

"Typical geothermal tap into hot water that is deep under ground, pull the heat off the hot water, use that heat to generate electricity, and then return the cooler water back to the deep subsurface. Here the water is partly replaced with CO2 or another fluid—or a combination of fluids," he said.

CO2 extracts heat more efficiently than water, he added.

This approach—using concentric rings that circulate multiple fluids—builds upon the idea to use CO2 originally developed by Martin Saar and others at the University of Minnesota, and can be at least twice as efficient as conventional geothermal approaches, according to computer simulations.

"When we began to develop the idea to use CO2 to produce geothermal energy, we wanted to find a way to make CO2 storage cost-effective while expanding the use of geothermal energy," said Jimmy Randolph, postdoctoral researcher in the Department of Earth Sciences at the University of Minnesota.

"We hope that we can expand the reach of geothermal energy in the United States to include most states west of the Mississippi River," Bielicki said.

The current research team includes Ohio State, the University of Minnesota and Lawrence Livermore National Laboratory, where geoscientist Tom Buscheck came up with the idea to add nitrogen to the mix.

He and his colleagues believe that the resulting multifluid design will enable geothermal power plants to store energy away – perhaps hundreds of gigawatt hours—for days or even months, so that it is available when the electricity grid needs it. The underground geothermal formation could store hot, pressurized CO2 and nitrogen, and release the heat to the surface power plant when electricity demand is greatest. The plant could also suspend heat extraction from the subsurface during times of low power demand, or when there is already a surplus of renewable power on the grid.

"What makes this concept transformational is that we can deliver renewable energy to customers when it is needed, rather than when the wind happens to be blowing, or when spring thaw causes the greatest runoff," Buscheck said.

In computer simulations, a 10-mile-wide system of concentric rings of horizontal wells situated about three miles below ground produced as much as half a gigawatt of electrical power—an amount comparable to a medium-sized coal-fired power plant—and more than 10 times bigger than the 38 megawatts produced by the average geothermal plant in the United States.

The simulations also revealed that a plant of this design might sequester as much as 15 million tons of CO2 per year, which is roughly equivalent to the amount produced by three medium-sized coal-fired power plants in that time.

Bielicki noted the possibility of expanding the use of geothermal energy around the country. Right now, most geothermal power plants are in California and Nevada, where very is relatively close to the surface. But the new design is so much more efficient at both storing energy and extracting heat that even smaller-scale "hotspots" throughout the western U.S. could generate power.

The eastern U.S. is mostly devoid of even small hotspots, so would still be limited to a few particularly active areas such as West Virginia, he said.

Another caveat: The geothermal plant would probably have to be connected to a large CO2 source, such as a coal-fired power plant that is scrubbing the CO2 from its own emissions. That connection would likely be made by pipeline.

Buscheck added, however, that the study showed that this design could work effectively with or without CO2, and said a pilot plant based on this design could initially be powered solely by nitrogen injection to prove the economic viability of using CO2. The research team is currently working on more detailed computer model simulations and economic analyses for specific geologic settings in the U.S.

The project is unusual in part because, as they were refining their ideas, the engineers joined with Shannon Gilley, then a master of fine arts student at the Minneapolis College of Art and Design. Bielicki worked with Gilley for more than a year to create the computer animated video titled "Geothermal Energy: Enhancing our Future." Part of Gilley's task was to communicate the more complex details of climate change, CO2 storage and to the general public.

"We built this concept of public outreach into our efforts not just to communicate our work, but also to explore new ways for scientists, engineers, economists and artists to work together," Bielicki said.

Explore further: Renewable sources can provide stable power

More information: Presentation H54b-02, "Multi-Fluid Geothermal Energy Systems: Using CO2 for Dispatchable Renewable Power Generation and Grid Stabilization," will take place on Friday, Dec. 13 at 4:15 p.m. PT in room 3011, Moscone West.

The movie "Geothermal Energy: Enhancing Our Future" is publicly available and can be viewed/embedded at www.energypathways.org

Related Stories

Zero-emission electricity studied to power the Galilee Basin

Feb 10, 2010

(PhysOrg.com) -- In the wake of mining billionaire Clive Palmer’s announcement to build six mines in the Galilee Basin, UQ research is investigating the possibility of emission-free electricity from a plentiful underground ...

Renewable sources can provide stable power

Dec 02, 2013

Renewable energy sources - an area in which Germany is a leader - are becoming increasingly important for the worldwide power mix. Nevertheless, experts are still deliberating which market model is best for ...

Recommended for you

Indonesia passes law to tap volcano power

Aug 26, 2014

The Indonesian parliament on Tuesday passed a long-awaited law to bolster the geothermal energy industry and tap the power of the vast archipelago's scores of volcanoes.

Expert calls for nuke plant closure (Update)

Aug 25, 2014

A senior federal nuclear expert is urging regulators to shut down California's last operating nuclear plant until they can determine whether the facility's twin reactors can withstand powerful shaking from ...

Image: Testing electric propulsion

Aug 20, 2014

On Aug. 19, National Aviation Day, a lot of people are reflecting on how far aviation has come in the last century. Could this be the future – a plane with many electric motors that can hover like a helicopter ...

Where's the real value in Tesla's patent pledge?

Aug 20, 2014

With the much-anticipated arrival next month of electric vehicle manufacturer Tesla's Model S to Australian shores, it's a good time to revisit Tesla's pledge to freely share patents. ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

Drjsa_oba
2.7 / 5 (3) Dec 12, 2013
I think we need a study to determine the long term effects on continental Drift and magma, core , crust effects of using geothermal energy. It is quite clear that we could satisfy global energy needs by extracting heat from the Earth and this will probably take place more and more as time goes by. I just don't want to lose the Earths magnetic field or worse.
Newbeak
3.7 / 5 (3) Dec 12, 2013
I seriously doubt man could ever make a dent in the geothermal energy contained in the earth.Besides,the core is constantly replenishing it's heat from radioactive decay..
Shakescene21
1 / 5 (2) Dec 13, 2013
Environmentally, the best source of geothermal energy would be volcanoes. If geothermal plants could remove the excess heat that is building under a volcano, they could in effect "diffuse" these destructive bombs and produce clean electricity in the process.
StanFlouride
3.7 / 5 (3) Dec 13, 2013
Posted on Thursday, Dec. 12:

"At the American Geophysical Union meeting on Friday, Dec. 13, the research team debuted an expanded version of the design..."

Wow! They've also apparently managed to acquire time travel!
daqddyo
1 / 5 (2) Dec 13, 2013
One thing I like about Phys.org articles is the frequent use of the words "might" and "could".

Perhaps a way could be found to use some of this excess stored energy and separate the O2 from the sequestered CO2 to make ....

The mind boggles!
Eikka
not rated yet Dec 13, 2013
Environmentally, the best source of geothermal energy would be volcanoes. If geothermal plants could remove the excess heat that is building under a volcano, they could in effect "diffuse" these destructive bombs and produce clean electricity in the process.


The volcanoes are situated on top of convection flows in the earth's mantle. Cooling the top is like trying to put a cork in a geyser. If it wants to go, it goes, and all you can do is make it worse by increasing the pressure.