Unusual fungal metabolites with antitumor activity discovered by crowdsourcing

December 11, 2013
Unusual fungal metabolites with antitumor activity discovered by crowdsourcing

(Phys.org) —Since the discovery of penicillin, fungi have been a nearly inexhaustible source for the discovery of new drugs. "Crowdsourcing", the cooperation of a large number of interested nonscientists, has helped to find a new fungus from which American researchers have now isolated and characterized an unusual metabolite with interesting antitumor activity.

To date, fewer than 7 % of the more than 1.5 million species of thought to exist have been investigated for bioactive components. To change this situation, a research group headed by Robert H. Cichewicz at the University of Oklahoma has prepared a collection of several thousand fungal isolates from three regions: arctic Alaska, tropical Hawaii, and subtropical to semiarid Oklahoma. The fungal extracts were analyzed and subjected to biological tests, including antitumor activity, by Susan L. Mooberry at the University of Texas at San Antonio. This resulted in the of a number of interesting substances.

The researchers soon realized that the efforts of a single research team were insufficient to acquire samples representing the immense diversity of the thousands of fungi they hoped to test. Therefore, the team turned to a "" approach, in which lay people with an interest in science, known as "", were invited to take part in the collection process by submitting soil samples from their properties. Crowdsourcing is becoming an increasingly important tool, giving research groups access to information and samples that could otherwise not be subjected to scientific study. Crowdsourcing has previously been used in a variety of projects, including the analysis of historic weather data and the classification of newly discovered galaxies.

Putting this approach into practice, the research team uncovered a new fungal strain identified as a Tolypocladium species in a crowdsourced soil sample from Alaska. The fungal isolate, which was identified by Andrew Miller at the University of Illinois, was highly responsive to changes in the way it was grown, leading to the production of several new compounds, including a unique metabolite with significant . This substance may represent a valuable new approach to cancer treatment because it avoids certain routes that lead to resistance.

To obtain this substance, a biosynthetic pathway that is not active under normal conditions was activated by the addition of specific chemicals, cultivation in a special medium, and in the presence of Pseudomonas bacteria. The scientists were able to isolate and characterize the metabolite they called maximiscin. Spectroscopic techniques revealed that maximiscin is a rather unusual structure, having been produced through a combination of diverse biosynthetic pathways unique to this fungus.

The researchers point out the essential roles that citizen scientists can play. "Many of the groundbreaking discoveries, theories, and applied research during the last two centuries were made by scientists operating from their own homes. Although much has changed, the idea that citizen scientists can still participate in research is a powerful means for reinvigorating the public's interest in science and making important discoveries," says Cichewicz.

Explore further: New Danish fungal species discovered

More information: Du L, Robles AJ, King JB, et al. "Crowdsourcing Natural Products Discovery to Access Uncharted Dimensions of Fungal Metabolite Diversity." Angew Chem Int Ed Engl. 2013. dx.doi.org/10.1002/anie.201306549

Related Stories

New Danish fungal species discovered

September 4, 2012

A new fungal species, called Hebelomagriseopruinatum, has now officially been included in the list of species. The fungus, whose name can be translated into 'the grey-dewy tear leaf', was discovered on Zealand in Denmark ...

Fungi collection key in identifying diseases

July 30, 2013

A collection of fungi maintained by the U.S. Department of Agriculture (USDA) played a crucial role in helping scientists identify the specific fungus causing an anthracnose disease discovered in a southern turf grass, and ...

Could fungal collection hold the key to new life-saving drugs?

June 13, 2007

Scientists may be one step closer to finding new drugs to fight MRSA, cancers and other diseases, after CABI, a leading bioservices organisation announced that its fungal collection will be screened by the University of Strathclyde.

Team sequencing 1,000 fungal genomes

November 7, 2011

A 79-year-old collection of fungal cultures and the U.S. Forest Service's Northern Research Station are part of a team that will sequence 1,000 fungal genomes in the next 5 years.

Recommended for you

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.