Tet1 protein helps developing germ cells wipe genes clean of past imprints

Dec 04, 2013

A protein called Tet1 is partly responsible for giving primordial germ cells a clean epigenetic slate before developing into sperm and egg cells, according to a new study by researchers at Boston Children's Hospital. This discovery could help provide clues to the cause of some kinds of neonatal growth defects and may also help advance the development of stem cell models of disease.

The findings were reported online Dec. 1 in Nature by a research team led by Yi Zhang, PhD, and Shinpei Yamaguchi, PhD, of Boston Children's Program in Cellular and Molecular Medicine.

Each of our cells carries two copies, or alleles, of every gene in our genome, one from each parent. In certain genes, one allele is imprinted—marked with small chemical tags called methyl groups—to keep it silent and prevent biological conflicts from arising between the two copies.

Before they mature into sperm or , primordial ' imprinting patterns are erased and then re-established in an allele-specific manner. This process ensures that in the developing embryo only one member of each pair of alleles is expressed.

Zhang and Yamaguchi showed in a mouse model lacking the Tet1 gene that loss of the Tet1 protein prevented primordial germ cells from erasing their imprints, leading to embryonic lethality and reductions in the size of live-born offspring. The results suggest that Tet1 mutations may contribute to certain human birth defects and also provide insight into the mechanisms underlying the erasure process.

"We've long known what proteins are responsible for establishing imprinting patterns," says Zhang. "How erasure occurs has been less clear.

"We realize that Tet1 does not act alone in the erasure of genomic imprints, but is one important factor," he added. "We need to do additional work to understand what other proteins are involved."

Zhang noted that proper imprinting also has a role in cellular reprogramming, such as the generation of induced pluripotent stem (iPS) cells.

"Proper imprinting pattern is critical for the maintenance of normal development and differentiation, but abnormal imprinting pattern is frequently observed in iPS cells after reprogramming," he explained. "Understanding how imprints are erased could lead to more effective methods of high-quality iPS cell generation."

Explore further: Odd histone helps suppress jumping genes in stem cells, study says

Related Stories

Homing in on developmental epigenetics

Aug 23, 2013

Germ cells have unique molecular features that enable them to perform the important task of transmitting genetic information to the next generation. During development from their embryonic primordial state, ...

Egg Cetera #1: The immortal egg

Apr 06, 2012

In the first report of our Egg Cetera series on egg-related research, biologists Dr. Harry Leitch and Professor Azim Surani describe how advances in understanding egg development could transform reproductive ...

Recommended for you

'Zombie' bacteria found able to kill other bacteria

May 04, 2015

(Phys.org)—A trio of researchers with the Hebrew University of Jerusalem has found that bacteria that die as a result of silver poisoning can serve as a means to continue to kill other bacteria in the same ...

Students participate in huge research study on tiny viruses

May 04, 2015

A new study appearing this week in the scientific journal eLIFE about the rapid evolution of small viruses that infect bacteria includes 59 University of Colorado Boulder co-authors, all of whom conducted research for th ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.