Team finds way to make solar cells thin, efficient and flexible

December 9, 2013
Debashis Chanda helped create large sheets of nanotextured, silicon micro-cell arrays that hold the promise of making solar cells lightweight, more efficient, bendable and easy to mass produce. Credit: UCF

Converting sunshine into electricity is not difficult, but doing so efficiently and on a large scale is one of the reasons why people still rely on the electric grid and not a national solar cell network.

But a team of researchers from the University of Illinois at Urbana-Champaign and the University of Central Florida in Orlando may be one step closer to tapping into the full potential of solar cells. The team found a way to create large sheets of nanotextured, silicon micro-cell arrays that hold the promise of making lightweight, more efficient, bendable and easy to mass produce.

The team used a light-trapping scheme based on a nanoimprinting technique where a polymeric stamp mechanically emboss the nano-scale pattern on to the solar cell without involving further complex lithographic steps. This approach has led to the flexibility researchers have been searching for, making the design ideal for mass manufacturing, said UCF assistant professor Debashis Chanda, lead researcher of the study.

The study's findings are the subject of the November cover story of the journal Advanced Energy Materials.

Previously, scientists had suggested designs that showed greater absorption rates of sunlight, but how efficiently that sunlight was converted into electrical energy was unclear, Debashis said. This study demonstrates that the light-trapping scheme offers higher electrical efficiency in a lightweight, flexible module.

The team believes this technology could someday lead to solar-powered homes fueled by cells that are reliable and provide stored energy for hours without interruption.

Explore further: A new world record for solar cell efficiency

Related Stories

A new world record for solar cell efficiency

January 17, 2013

In a remarkable feat, scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, have developed thin film solar cells on flexible polymer foils with a new record efficiency of 20.4 percent for ...

The fluorescent future of solar cells

May 9, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding a fluorescent ...

Understanding what makes a thin film solar cell efficient

November 5, 2013

Swiss scientists have developed a new technique for manufacturing high-efficiency, flexible, thin film solar cells from CIGS (copper indium gallium di-selenide) semiconductors. This has enabled them to achieve an efficiency ...

Power boosting self-cleaning solar panels

November 22, 2013

High-power, self-cleaning solar panels might be coming soon to a roof near you. There are two obvious problems with photovoltaic cells, solar panels. First, they are very shiny and so a lot of the incident sunlight is simply ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Moebius
1 / 5 (1) Dec 09, 2013
It seems like every few weeks there's an article about how someone discovered a way to make solar cells more efficient or cheaper or better. Has any of this gotten to the market yet? It doesn't seem like there has been much advance in currently offered products.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.