Team finds way to make solar cells thin, efficient and flexible

Dec 09, 2013
Debashis Chanda helped create large sheets of nanotextured, silicon micro-cell arrays that hold the promise of making solar cells lightweight, more efficient, bendable and easy to mass produce. Credit: UCF

Converting sunshine into electricity is not difficult, but doing so efficiently and on a large scale is one of the reasons why people still rely on the electric grid and not a national solar cell network.

But a team of researchers from the University of Illinois at Urbana-Champaign and the University of Central Florida in Orlando may be one step closer to tapping into the full potential of solar cells. The team found a way to create large sheets of nanotextured, silicon micro-cell arrays that hold the promise of making lightweight, more efficient, bendable and easy to mass produce.

The team used a light-trapping scheme based on a nanoimprinting technique where a polymeric stamp mechanically emboss the nano-scale pattern on to the solar cell without involving further complex lithographic steps. This approach has led to the flexibility researchers have been searching for, making the design ideal for mass manufacturing, said UCF assistant professor Debashis Chanda, lead researcher of the study.

The study's findings are the subject of the November cover story of the journal Advanced Energy Materials.

Previously, scientists had suggested designs that showed greater absorption rates of sunlight, but how efficiently that sunlight was converted into electrical energy was unclear, Debashis said. This study demonstrates that the light-trapping scheme offers higher electrical efficiency in a lightweight, flexible module.

The team believes this technology could someday lead to solar-powered homes fueled by cells that are reliable and provide stored energy for hours without interruption.

Explore further: Understanding what makes a thin film solar cell efficient

Related Stories

Understanding what makes a thin film solar cell efficient

Nov 05, 2013

Swiss scientists have developed a new technique for manufacturing high-efficiency, flexible, thin film solar cells from CIGS (copper indium gallium di-selenide) semiconductors. This has enabled them to achieve ...

Power boosting self-cleaning solar panels

Nov 22, 2013

High-power, self-cleaning solar panels might be coming soon to a roof near you. There are two obvious problems with photovoltaic cells, solar panels. First, they are very shiny and so a lot of the incident sunlight is simply ...

A new world record for solar cell efficiency

Jan 17, 2013

In a remarkable feat, scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, have developed thin film solar cells on flexible polymer foils with a new record efficiency of ...

The fluorescent future of solar cells

May 09, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding ...

Recommended for you

Light pulses control graphene's electrical behavior

5 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Moebius
1 / 5 (1) Dec 09, 2013
It seems like every few weeks there's an article about how someone discovered a way to make solar cells more efficient or cheaper or better. Has any of this gotten to the market yet? It doesn't seem like there has been much advance in currently offered products.