Sterile salmon: Reducing the environmental impact of farm escapees

December 10, 2013

A PhD project carried out at the Norwegian School of Veterinary Science in collaboration with the Institute of Marine Research has investigated the use of sterile salmon in aquaculture as a means to prevent escaped farmed salmon interbreeding with wild salmon. The study used a method known as triploidy to induce sterility in Atlantic salmon. The results suggest that in order to successfully integrate triploid salmon into the industry, some modifications are required to the current protocols used today to prevent heart and skeletal deformities.

Salmon farming is a major industry in Norway. However, environmental concerns remain over the industries impact on wild populations. Hundreds of thousands of farmed salmon are reported to escape in Norway each year and these fish can breed with wild fish creating hybrids that are less adapted for life in the wild. The use of sterile fish would prevent this situation.

Triploidy, whereby the individual retains the genetic material using discarded during fertilisation, is the most feasible method to produce commercially available sterile fish. Indeed, triploids are currently used in global shellfish production and in France and Australia. However, previous work has shown triploids to have more skeletal deformities and lower temperature optima than the diploid salmon currently used in Norwegian aquaculture.

Thomas Fraser's thesis is a study of the potential use of triploid salmon in Norwegian aquaculture in relation to culture practices and heart and skeletal deformities. The main finding of the thesis is that using current culture practices triploids do have higher levels of skeletal deformities than diploids. This difference is greater when the salmon are incubated at the higher ranges of temperatures used in the industry.

In addition, triploids had a higher prevalence of heart deformities when incubated at the higher temperatures. Triploids also demonstrated a greater adverse effect to vaccination than diploids when vaccinated at high water temperatures, as would occur if fish were vaccinated during the summer/early autumn months. Therefore, special consideration with respect to water temperature is required in the production of triploid salmon.

In summary, sterile triploid salmon show potential for use in the Norwegian salmon farming industry although they are likely to require alterations in culture practices to achieve their greatest potential.

MRes Thomas William Kenneth Fraser will defend his doctoral research on 6th December 2013 at the Norwegian School of Veterinary Science with a thesis entitled: "Deformities and morphology of the heart and skeleton in triploid Atlantic salmon: The influence of production strategies and their impact on welfare".

Explore further: Dramatic declines in wild salmon populations are associated with exposure to farmed salmon

Related Stories

Sterile farmed salmon can reduce genetic impact on wild fish

August 27, 2013

Interbreeding between escaped farmed salmon and their wild counterparts is a major headache for the aquaculture industry. Now Norwegian fish farming companies are raising one million sterile salmon in sea cages – for the ...

Salmon fry have less sensitive intestines than smolt

December 2, 2013

A PhD research project at the Norwegian School of Veterinary Science has provided essential knowledge about the mechanisms leading to feed-induced enteritis in salmon and also insight into the salmon's intestinal immune defence ...

Recommended for you

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.

Threat posed by 'pollen thief' bees uncovered

October 9, 2015

A new University of Stirling study has uncovered the secrets of 'pollen thief' bees - which take pollen from flowers but fail to act as effective pollinators - and the threat they pose to certain plant species.

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.