Slippery bark protects trees from pine beetle attack, study finds

Dec 23, 2013
Clockwise from top left: This shows (1) two lodgepole pines growing side-by-side with notably different bark textures, (2) a rough-barked limber pine that has been attacked by bark beetles, (3) a limber pine that has both rough and smooth bark, with pine beetle attacks only on the rough bark, (4) a limber pine with predominantly smooth bark. Credit: Scott Ferrenberg.

Trees with smoother bark are better at repelling attacks by mountain pine beetles, which have difficulty gripping the slippery surface, according to a new study by the University of Colorado Boulder.

The findings, published online in the journal Functional Ecology, may help land managers make decisions about which trees to cull and which to keep in order to best protect forested properties against pine beetle infestation.

The current epidemic has spread across 3.4 million acres in Colorado since the outbreak was first detected in 1996. The tiny , which are about the size of a grain of rice, bore into the pine bark. The trees fight back by exuding pitch, which pushes the beetles back out of the tree. Large-scale and continuous beetle attacks can kill the tree.

Doctoral student Scott Ferrenberg, who led the study, said he first began to suspect that bark texture might affect the survival of trees while he and Jeffry Mitton, a professor of ecology and evolutionary biology, were walking through a stand of high-elevation limber pines. They noticed that surface resin, a residue of fighting off a beetle invasion, was common only on patches of rough bark.

"We found trees that had both textures on the same stem, and when the tree was attacked, it was on the rough surfaces," Ferrenberg said. "We thought the beetles were either choosing to avoid the smooth surface, or they just couldn't hang onto it."

To determine which was the case, the researchers tested how well the beetles could hold onto different bark textures. They placed each of 22 beetles on a rough patch of bark and on a smooth patch. They timed how long the beetle could stay on each surface before falling.

Twenty-one of the 22 beetles were able to cling to the rough bark until the test ended after five minutes. But all of the beetles fell from the smooth bark in less than a minute.

The results—especially combined with the findings of a second study also recently published by the research team—provide information that may be useful to land managers who are trying to keep public parks and other relatively small forested areas healthy.

In the second study, published online in the journal Oecologia, Ferrenberg, Mitton and Jeffrey Kane, of Humboldt State University in California, found that a second physical characteristic of a tree also helps predict how resistant the pine is to beetle infestation.

The team discovered that trees that had survived beetle attacks had more resin ducts than trees that were killed. The number of resin ducts differed between trees of the same age, and in general, younger trees had more resin ducts than older trees.

The number of resin ducts—which is related to the trees' ability to pitch out the beetles—is easily counted by taking a small core of the tree.

"There are very practical applications," Ferrenberg said. "These two traits are very easy to see on the tree."

Because young trees tend to have smoother bark as well as more resin ducts, the research also suggests that should consider cutting down some older trees when mitigating properties to resist beetles.

"This contradicts the approach that has been historically common for fire management," Ferrenberg said. "The common approach for fire is to cut all the small . But if you want to defend a small amount of land against beetles, that may not be the best strategy."

Explore further: From dandruff to deep sea vents, an ecologically hyper-diverse fungus

add to favorites email to friend print save as pdf

Related Stories

Complex dynamics underlie bark beetle eruptions

Jun 02, 2008

Forest management that favors single tree species and climate change are just two of the critical factors making forests throughout western North America more susceptible to infestation by bark beetles, according to an article ...

Pining for a beetle genome

Mar 26, 2013

The sequencing and assembly of the genome of the mountain pine beetle, Dendroctonus ponderosae, is published online this week in Genome Biology. The species is native to North America, where it is current ...

Warm winters mean more pine beetles, tree damage

Mar 28, 2012

(PhysOrg.com) -- Some populations of mountain pine beetles now produce two generations of tree-killing offspring annually, dramatically increasing the potential for bugs to kill lodgepole and ponderosa pine ...

Recommended for you

Of bees, mites, and viruses

4 hours ago

Honeybee colonies are dying at alarming rates worldwide. A variety of factors have been proposed to explain their decline, but the exact cause—and how bees can be saved—remains unclear. An article published on August ...

Genetically tracking farmed fish escaping into the wild

Aug 20, 2014

European sea product consumption is on the rise. With overfishing being a threat to the natural balance of the ocean, the alternative is to turn to aquaculture, the industrial production of fish and seafood. ...

France fights back Asian hornet invader

Aug 20, 2014

They slipped into southwest France 10 years ago in a pottery shipment from China and have since invaded more than half the country, which is fighting back with drones, poisoned rods and even chickens.

User comments : 0