Sharpening the focus in quantum photolithography

Dec 17, 2013

A new protocol makes it possible to improve the accuracy of photolithography by addressing its physical limitations.

Photolithography uses light beams to design thin geometric patterns on the substrates of semiconductors used in . This is achieved using a chemical reaction on a light-sensitive chemical, called photoresist. The trouble is that the phenomenon of light diffraction does not permit highly accurate patterns.

Often, the edges of stripes have low contrast, and the distances between the stripes and the stripes' width are limited by what is referred to as Rayleigh's diffraction limit. Now, a scientist from Russia has developed a quantum lithography protocol designed to improve the resolution of this technology. The findings of George Miroshnichenko, a physicist at Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, have just been published in European Physical Journal D.

Until now, quantum lithograph protocols have been based on multi-photon absorption. This means that the frequency of the incoming light needed to be several times smaller than the frequency required for the absorption of a single photon, to trigger the absorption of multiple photons by the photoresist. As a result, this approach requires a higher , and produces lower resolution.

Instead, Miroshnichenko establishes the formula for the probability of a single - and no longer multiple - photon transition from a bound state of a quantum system to a state of continuous spectrum, using the so-called Markov approximation. This makes it possible to select the exposure time and the beam's intensity to obtain a narrow stripe in the photoresist on the substrate.

Thus, in negative photoresist, this protocol can be used to create a stripe with a width equal to half the wavelength and high-contrast edges. For positive , thin stripes can be formed on the substrate with a width that is substantially smaller than the wavelength, but the distance between these stripes is equal to half the wavelength.

Explore further: New photoresist technology for organic semiconductors enabling submicron patterns

More information: G. P. Miroshnichenko (2013), Quantum lithography on bound-free transitions, European Physical Journal D, DOI: 10.1140/epjd/e2013-40586-2

Related Stories

More precise method of nanopatterning

Aug 04, 2011

“A nanoimprint method has already been achieved in nanopatterning with a high resolution using negative type photoresist,” Kosei Ueno tells PhysOrg.com. Ueno is a scientist at Hokkaido University in Sapporo, Japan, ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...