Sea level rise and shoreline changes are lead influences on floods from tropical cyclones

December 4, 2013
UMass Amherst geosciences graduate student Christine Brandon, left, and Jon Woodruff, survey sediments at the shoreline after Hurricane Sandy. Woodruff is lead author a new review of flood and other risk associated with tropical cyclones. Credit: UMass Amherst

Despite the fact that recent studies have focused on climate change impacts on the intensity and frequency of tropical cyclones themselves, a research team led by Jon Woodruff of the University of Massachusetts Amherst found on review of the relevant science that sea level rise and shoreline retreat are the two more certain factors expected to drive an increase in future flood risk from such storms.

Writing in the current special issue of Nature dedicated to coastal regions, geoscientist Woodruff, with co-authors Jennifer Irish of Virginia Tech University and Suzana Camargo of Columbia University, say, "Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from ."

Sea level rise and its potential to dramatically change the coastal landscape through shoreline erosion and barrier island degradation, for example, is an under-appreciated and understudied factor that could lead to catastrophic changes in flood risk associated with tropical cyclones, known as hurricanes in the North Atlantic, they say.

Woodruff adds, "There is general agreement that while globally, tropical cyclones will decline in frequency, their strength will be more intense. However, there is less consensus on the magnitude of these changes, and it remains unclear how closely individual regions of tropical cyclone activity will follow global trends."

Despite these uncertainties, the UMass Amherst geoscientist notes, the intensity and frequency of flooding by tropical cyclones will increase significantly due to accelerated . Further, the geologic record provides clear examples for the importance of accelerated rise in initiating significant changes in shoreline behavior.

"The era of relatively moderate sea level rise that most coastlines have experienced during the past few millennia is over, and shorelines are now beginning to adjust to a new boundary condition that in most cases serves to accelerate rates of shoreline retreat," he says.

The authors focus on three physical factors they say should be considered together to understand future coastal flooding from hurricanes: Tropical cyclone climatology, relative sea level rise and shoreline change. "Modes of climate variability explain 30 to 45 percent of the variance of tropical cyclone activity within the instrumental historical record. This percentage is far less, however, when considering only storms that make landfall," they point out.

By contrast, "a future rise in sea level is far more certain, particularly along the coastlines most prone to tropical cyclone disruption. For example, a rise in sea level of 1 meter for the New York City region would result in the present-day 100-year flood events occurring every 3 to 20 years. Most engineered coastlines are not designed for this increase in extreme flood frequency, and the dominance of sea-level rise and landscape dynamics on impacts by landfalling tropical cyclones must be acknowledged for effective planning and management of our future coastlines," Woodruff and colleagues write.

They add that "population centers most at risk of tropical cyclone impacts are mainly located along dynamic and subsiding sedimentary coasts that will serve to further enhance the impact of future tropical cyclone floods." People can soften such impacts "partly with adaptive strategies, which include careful stewardship of sediments," and by reducing human-caused land subsidence along many of the world's most populated coastlines due to the extraction of groundwater, oil and gas.

Woodruff and colleagues present prehistoric, instrumental and modeling evidence supporting the dominance of sea level rise on extreme flooding associated with tropical cyclones and the compounding influences of resulting shoreline change on the flood intensity by these events. They say that paleoreconstructions from barrier beach systems and accompanying marshes indicate that "many if these coastal environments have remained remarkably stable over the last few millennia, despite episodic and extreme disruption by tropical cyclones."

In stark contrast, these landforms were either non-existent or quickly washed over by storms, during pre-historic times of rapid sea level rise similar to those projected for the end of this century, in 2100. The authors point out, "It is therefore prudent to expect a decrease in the resilience of these low-lying coastlines from tropical cyclone impacts when enhanced by elevated rates of sea level rise."

Finally, they discuss management strategies in the context of "an almost certain increase in tropical cyclone flood frequency", as well as the need for accurate assessments of the disturbance and resilience of coastal systems to episodic flooding by tropical cyclones under increased rates of sea level rise.

Explore further: Storminess helps coastal marshes withstand sea level rise

Related Stories

Storminess helps coastal marshes withstand sea level rise

February 11, 2013

Rising sea levels are predicted to threaten many coastal sea marshes around the world in the coming decades as the Earth's climate warms. In addition to accelerating sea level rise, global climate change is predicted to increase ...

UN: Besides Haiyan, 2013 storm season near average

November 13, 2013

Apart from Typhoon Haiyan, which has devastated the Philippines, it's been an average year for tropical cyclones, the U.N. weather agency said Wednesday in its annual climate report.

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

The Alchemist
1.6 / 5 (7) Dec 04, 2013
An another score for the Alchemist!

Who needs a meter? We have more than enough cm now!

That's right boys and girls, Nature reads me for ITS sources!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.