Scientists make significant step forward in biofuels quest

Dec 22, 2013

Scientists at the University of York have made a significant step in the search to develop effective second generation biofuels. Researchers from the Department of Chemistry at York have discovered a family of enzymes that can degrade hard-to-digest biomass into its constituent sugars.

'First generation' biofuels have already made an impact in the search for renewable and secure energy sources particularly through the generation of bioethanol manufactured from easy-to-digest food sources such as corn starch. But the resulting need for energy crops is using up valuable arable land threatening food price stability and limiting the amount of that can be made in this way.

The use of 'difficult-to-digest' sources, such as plant stems, wood chips, cardboard waste or insect / crustacean shells, offers a potential solution. Fuel made from these sources is known as 'second generation' biofuels. Finding a way of breaking down these sources into their constituent sugars to allow them to be fermented through to bioethanol is regarded as the 'Holy Grail' of biofuel research.

Reported today in Nature Chemical Biology, the new research was led by Professor Paul Walton and Professor Gideon Davies at York and also involved Professor Bernie Henrissat, of CNRS, Aix-Marseille Université, Marseille, France. It opens up major new possibilities in the production of bioethanol from sustainable sources.

By studying the biological origins and the detailed chemistry of the enzyme family, the researchers have shown that Nature has a wide range of methods of degrading biomass which humankind can now harness in its own endeavour to produce sustainable biofuels.

Professor Walton says: "There's no doubt that this discovery will have an impact on not only those researchers around the globe working on how to solve the problems associated with second generation biofuel generation, but—more importantly—also on the producers of bioethanol who now have a further powerful tool to help them generate biofuel from sustainable sources such as waste plant matter."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: 'Discovery and characterization of a new family of lytic polysaccharide monooxygenases' Nature Chemical Biology dx.doi.org/10.1038/nchembio.1417

Related Stories

EU cuts use of food-based biofuels

Oct 17, 2012

The European Commission said Wednesday that it was cutting targets for the use of biofuels so as to reduce the negative impact on food production and prices.

France reconsiders plans to boost biofuel use

Sep 12, 2012

France said Wednesday it would reconsider its plans to further develop the use of biofuel, once seen as a potential source of cheap alternative energy but now blamed for soaring food prices.

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.