Scientists calculate friction of Japan's 9.0 earthquake in 2011

Dec 05, 2013

An international team of scientists that installed a borehole temperature observatory following the 2011 Tohoku-Oki earthquake in Japan has been able to measure the "frictional heat" generated during the rupture of the fault – an amount the researchers say was smaller than expected, which means the fault is more slippery than previously thought.

It is the first time scientists have been able to use precise temperature measurements to calculate the friction dynamics of fault slip.

Results of the study are being published this week in the journal Science.

"This gives us some unprecedented insights into how earthquakes actually work," said Robert Harris, a geophysicist at Oregon State University and co-author on the Science article. "No one really knows how much frictional resistance there is to slip and this for the first time gives us some idea.

"The project itself was an engineering feat and an amazing one at that," added Harris, who is a professor in the College of Earth, Ocean, and Atmospheric Sciences at Oregon State. "To reach the fault, the team had to drill through 800 meters of the seafloor – at a depth of nearly 7,000 meters below the ocean's surface. It pushed the limits of that technology as far as they can go."

The study was funded by the Japan Agency for Marine-Earth Science and Technology, the Integrated Ocean Drilling Program, the National Science Foundation, and the Gordon and Betty Moore Foundation.

Sixteen months after the magnitude 9.0 Tohoku-Oki earthquake, the scientists installed the borehole observatory in a section of the fault where the slippage between one section of rock and the adjacent one was a staggering 50 meters. It was that huge slip in the fault that triggered the tsunami that killed thousands of people and devastated the northern coast of Japan.

After nine months of operation, the research team successfully retrieved 55 precise temperature-sensing data loggers that extended below the seafloor through the – the deepest of which was about 820 meters below the seafloor.

Evaluation of the data showed an anomaly of 0.31 degrees (Celsius) with surrounding temperatures at the boundary of the plate's fault. When tectonic plates rub against each other, the frictional resistance to slip creates heat. By measuring changes to the background temperature field, they can calculate how much heat, or energy, was generated at the time of the earthquake.

"This is data that we've never had before," Harris said. "It will be helpful in understanding the dynamics of earthquakes in the future."

The scientists say this 0.31 temperature anomaly corresponds to 27 million joules, or 27 megajoules, per square meter of dissipated energy during the earthquake. A joule is the amount of energy required to produce one watt of power for one second. The "friction coefficient," or the resistance to relative motion between the blocks, was surprisingly small at 0.08, the scientists point out.

"One way to look at the friction of these big blocks is to compare them to cross-country skis on snow," Harris said. "At rest, the skis stick to the snow and it takes a certain amount of force to make them slide. Once you do, the ski's movement generates heat and it takes much less force to continue the movement.

"The same thing happens with an earthquake," he added. "This is the first time we've been able to calculate how much frictional resistance to slip there is. This has never been done before in nature – just in the laboratory."

Harris said the scientists hope to repeat the experiment with other earthquakes, although the logistics of such a study are daunting – requiring a large with lots of slip, the ability to quickly drill a deep borehole and then monitoring the thermal signal. Similar experiments with other earthquakes will allow the scientists to better understand the hazards associated with large earthquakes.

"This was a major accomplishment," he added, "but there is still a lot we don't yet know."

Explore further: Temperature data to reveal frictional heat generated by fault slip during the Tohoku earthquake

More information: "Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements," by P.M. Fulton et al. Science, 2013.

Read also: Slippery fault unleashed destructive Tohoku-Oki earthquake and tsunami, phys.org/news/2013-12-slippery-fault-unleashed-destructive-tohoku-oki.html

add to favorites email to friend print save as pdf

Related Stories

Earthquakes generate big heat in super-small areas: study

Oct 13, 2011

Most earthquakes that are seen, heard, and felt around the world are caused by fast slip on faults. While the earthquake rupture itself can travel on a fault as fast as the speed of sound or better, the fault ...

Recommended for you

How productive are the ore factories in the deep sea?

4 hours ago

About ten years after the first moon landing, scientists on earth made a discovery that proved that our home planet still holds a lot of surprises in store for us. Looking through the portholes of the submersible ...

NASA image: Volcanoes in Guatemala

9 hours ago

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

User comments : 0

More news stories

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...

Untangling Brazil's controversial new forest code

Approved in 2012, Brazil's new Forest Code has few admirers. Agricultural interests argue that it threatens the livelihoods of farmers. Environmentalists counter that it imperils millions of hectares of forest, ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.