Ramping up pterostilbene in crops

Dec 06, 2013 by Rosalie Marion Bliss
ARS scientists have developed a two-gene strategy that can boost production of the beneficial phytochemical pterostilbene in crops like blueberries that already produce it and also add it into crops that don't commonly produce it such as grapes.

A team of U.S. Department of Agriculture (USDA) scientists has developed a way to boost production of a beneficial plant compound called pterostilbene.

The discovery by Agricultural Research Service (ARS) scientists enables crop species to produce or increase production of pterostilbene. Stilbenes are a subgroup of beneficial plant phytochemicals called "polyphenols." The approach could pave the way for ramping up levels of potentially healthful pterostilbene in crops that normally produce it, such as grapes and berries.

ARS is USDA's principal intramural scientific research agency.

ARS molecular biologists Scott R. Baerson and Zhiqiang Pan and chemist Agnes Rimando headed the study. They and plant physiologist Franck Dayan, a coauthor, are with the ARS Natural Products Utilization Research Unit in Oxford, Miss. Another coauthor, ARS plant pathologist James Polashock, works with the agency's Genetic Improvement of Fruits and Vegetables Lab in Beltsville, Md., but is based in Chatsworth, N.J.

There are two stilbenes—resveratrol and pterostilbene—which may possess similar purported beneficial health properties. During their work, the team showed that a previously characterized and patented gene called SbOMT3, which they had isolated from the sorghum plant, is capable of converting resveratrol to pterostilbene. They then built on that conversion activity by co-expressing SbOMT3 with a stilbene-synthase gene, AhSTS3, that had been isolated from the peanut plant.

For the proof-of-concept study, both genes were successfully incorporated into the chromosomes of two different model host , Arabidopsis and tobacco. The two-gene strategy generated transgenic plants that were able to produce pterostilbene, the authors reported. The study results were published in Plant Biotechnology Journal in 2012.

An ARS patent, issued in 2010, describes the ability of SbOMT3 to produce transgenic plants that express pterostilbene, and describes the two-gene strategy.

Explore further: Bacterial tenants in fungal quarters

More information: Read more about this research in the November/December 2013 issue of Agricultural Research magazine.

Related Stories

Fungi collection key in identifying diseases

Jul 30, 2013

A collection of fungi maintained by the U.S. Department of Agriculture (USDA) played a crucial role in helping scientists identify the specific fungus causing an anthracnose disease discovered in a southern ...

Breeding hybrid catfish

Dec 06, 2013

In the catfish industry, it's well-known that hybrid catfish—a cross of the channel catfish with the blue catfish—generally have better growth, higher survival rates and better meat yield than purebred ...

Recommended for you

Bacterial tenants in fungal quarters

May 29, 2015

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

First step towards global attack on potato blight

May 28, 2015

European researchers and companies concerned with the potato disease phytophthora will work more closely with parties in other parts of the world. The first move was made during the biennial meeting of the ...

Bacteria study could have agricultural impact

May 28, 2015

Wichita State University microbiology professor Mark Schneegurt and ornithology professor Chris Rogers have discovered that one of North America's most common migratory birds – the Dark-eyed Junco – carries ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.