Quality of biodiversity, not just quantity, is key

Dec 06, 2013

For years, scientists have believed that preserving more species, no matter which ones, is a key component to enhancing how well an ecosystem performs.

Not so fast, say scientists at Duke University and the University of Massachusetts at Boston.

In a new study of biodiversity loss in a salt marsh, published this week in the Proceedings of the National Academy of Sciences, they find that it's not just the total number of species preserved that matters, it's the number of key species.

If humans want to reap the benefits of the full range of functions that salt marshes and other coastal ecosystems provide, we need to preserve the right mix of species, they said.

"Having a group of distantly related species, representing markedly different ecologies and biology, is as important, or more important, than just having more species in general," said Brian R. Silliman, Rachel Carson associate professor of marine conservation biology at Duke's Nicholas School of the Environment.

"It's quality, not just quantity," said lead author Marc J. S. Hensel, a Ph.D. student at the University of Massachusetts at Boston. "We need to preserve a wide variety of species."

Salt marshes perform a long list of ecological services: they buffer coastal erosion; filter runoff; reduce the risk of flooding; provide habitat for juvenile fish, crabs and shrimp; and store excess carbon, keeping it from re-entering Earth's atmosphere.

To better understand how the loss of key species affects these functions, Silliman and Hensel conducted a tightly controlled eight-month field experiment in a salt marsh on Sapelo Island, Ga. They set up eight different experimental treatments, each with a different mix of three of the marsh's most abundant "consumer" species: purple marsh crabs; marsh periwinkle snails; and fungus. At first, all three species were present, to mirror the natural "intact" conditions of the marsh. Silliman and Hensel then began sequentially removing species—first one, then two, then all three—to simulate extinctions.

Throughout the experiment, they measured the effects of each species mix on three important salt marsh functions: overall grass growth (productivity); the rate of dead plant removal (decomposition); and how fast tidal or storm surge water percolated through the marsh (filtration).

The effect of the species removals on individual functions varied considerably, because in , each species is very good at performing one or two functions.

However, when all three key species were present, the average rate of all functions—a measure of overall ecosystem health—rose simultaneously.

"Our study provides a rare, real-world example that the loss of key species can have profound impacts on the overall performance of an ecosystem," Silliman said. "It suggests that the ability of nature to perform well at multiple levels may depend not just on the overall number of species present, but on having many distantly related species, each of which performs a particular task that keeps an ecosystem healthy and allows it to provide the multiple benefits humans value."

"If we had only been looking at three different species of similarly functioning crabs, or only one marsh function, we would have missed that, and erroneously predicted that only one consumer is needed to maintain high system performance," he said.

Explore further: 'Tiger heavyweight' Nepal hosts anti-poaching summit

More information: "Consumer Diversity across Kingdoms Supports Multiple Functions in a Coastal Ecosystem" Marc J. S. Hansel and Brian R. Silliman. Proceedings of the National Academy of Sciences, Dec. 4, 2013 online. www.pnas.org/cgi/doi/10.1073/pnas.1312317110

Related Stories

Crabs put the pinch on marshlands

Sep 27, 2011

If you take a quick glance at the marsh next to Saquatucket Harbor in Harwich Port, Mass., you will notice right away that some of the grass is missing. The cordgrass there, and all around Cape Cod, has been slowly disappearing ...

Marsh plants actively engineer their landscape

Feb 13, 2013

Marsh plants, far from being passive wallflowers, are "secret gardeners" that actively engineer their landscape to increase their species' odds of survival, says a team of scientists from Duke University ...

Invasive crabs help Cape Cod marshes

Apr 03, 2013

(Phys.org) —Ecologists are wary of non-native species, but along the shores of Cape Cod where grass-eating crabs have been running amok and destroying the marsh, an invasion of a predatory green crabs has ...

Recommended for you

'Tiger heavyweight' Nepal hosts anti-poaching summit

5 hours ago

Nepal's success in turning tiger-fearing villagers into their protectors has seen none of the endangered cats killed for almost three years, offering key lessons for an anti-poaching summit opening in Kathmandu ...

GMO mosquito plan sparks outcry in Florida

Jan 31, 2015

A British company's plan to unleash hordes of genetically modified mosquitoes in Florida to reduce the threat of dengue fever and other diseases has sparked an outcry from fearful residents.

Population genomics unveil seahorse domain

Jan 30, 2015

In a finding vital to effective species management, a team including City College of New York biologists has determined that the lined seahorse (Hippocampus erectus) is more a permanent resident of the we ...

Researchers develop new potato cultivar

Jan 30, 2015

Dakota Ruby is the name of a new potato cultivar developed by the NDSU potato breeding project and released by the North Dakota Agricultural Experiment Station. Dakota Ruby has bright red skin, stores well and is intended ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.