Q&A: Animals and robots develop an unlikely scientific partnership

Dec 11, 2013 by Sarah Perrin

Collaborations between robotics specialists and biologists have never been so successful. The former draw their ideas from animal morphology while the latter have found in technology a useful tool for studying nature. Francesco Mondada, robotics engineer at EPFL, and Laurent Keller, specialist in evolutionary genetics at the University of Lausanne (UNIL), exchange their points of view. The latest issue of Flash presents their entire interview together with a special "robots- animals" section (in French).

One of them deals with life, the other with electronics and mechanics. Yet biologists and robotics specialists are having an increasing necessity to collaborate and share their knowledge. This results in different kinds of achievements, especially in the field of biomedicine. Additionally, such exchanges have also given rise to bio-inspired robotics, with a growing parade of robots imitating the morphology of animals. The ones engineered at EPFL have been inspired in cats, salamanders and insects.

There is a third type of feat: design robots that are capable of mingling amidst animal populations with the purpose of studying their behavior. This has become the specialty of Mondada's team at EPFL. At first they were engaged in a project involving cockroaches and then continued their adventure with chickens and fish. For his part, Laurent Keller, an expert in ants and at UNIL, has conducted a number of studies using robots developed at EPFL. Flash magazine presents a special "robots- animals" section together with an exchange of opinions between the biologist and the robotics engineer.

At first glance, when it comes to robotics and biology one could not imagine two more different fields of study. What were you interested about during these exchanges?

Francesco Mondada: As an engineer, I saw an opportunity to address new challenges and to answer questions that do not necessarily arise in more traditional engineering applications. For instance, when we worked on robotic cockroaches, there were chemical and miniaturization aspects that proved very interesting. When we do this kind of work we acquire knowledge that leads us to having new ideas for designing the robots' mechanisms and for developing new types of applications.

Laurent Keller: The use of robots can be useful in situations where you cannot directly employ real animals, mainly when we want to study social interactions or a particular aspect of behavior. In the project that I am conducting with Professor Dario Floreano at EPFL, we only work with robots. The aim is to study the evolution of cooperation among individuals, specifically to see the conditions under which they become more or less altruistic according to their degrees of relationship and the benefits they receive. The advantage with robots is that they can observe such evolution on a number of generations, while it would take years with real animals. In addition, we have also been able to test some theoretical biological models quantitatively for the first time.
- In practice, how does this interdisciplinary work and collaboration take place?

LK: In our case, robotics engineers had specific questions of a technical nature. On the other hand, our questions dealt with evolution and neural networks and were more complex. Therefore there is the matter of a language and concepts to be defined, which takes a little time. There are also differences in the approaches of the analysis. For example, as biologists we try to understand the behavior of all the individuals in a population as a whole, whereas engineers will tend to take only the best specimens into account.

FM: We engineers are concerned with design and biologists with analysis. Thus, there is a difference of method, vision, language. For example, to you, Laurent, what would be a significant temperature difference for an animal?

LK: Well, about two degrees.

FM: In electronics, the allowable temperature ranges are much wider. You begin to worry at the moment when you can no longer touch a component, when there's a difference of 20-30 degrees. For us, if we light a bulb and it heats, it's normal. For biologists, if they want light, it is normal for them to not to want heat. This is a typical example of the kind of difficulty or misunderstanding that may happen.

Laurent Keller, what made you think about the possibility of using robots?

LK: One of my students was interested in issues related to artificial intelligence and I put him in contact with people from EPFL. This is where the idea came to establish further collaboration. What interested me was the possibility to make machines capable of evolving and to observe group behaviors such as the evolution of sociability, which we are not able to study in isolation with real animals.

And you, Francesco Mondada, how did you become aware of the interest in using robots as a tool for biologists?

FM: When I was working on bio-inspired robotics projects, I had the opportunity to come across biologists who brought us the elements of behavior or animal morphology that we lacked. One day, we thought it would be nice to be able to, in turn, bring to robots to their labs. That proved quite a success! Then, I received requests from who were interested in using such a tool to conduct their research. And for us, this constitutes an interesting testing ground.

More and more inventions are combining technology and life sciences. How do you see the future? Do you think biologists and robotics specialists are going to have to collaborate even more?

LK: That's true; collaborations of this kind are more frequent. But personally, I prefer to stick to the concrete reality and I do not like to speculate on what might happen, which eventually never does as imagined.

FM: At EPFL there are good examples of inventions of this kind, particularly in the fields of neuroprosthetics and biomedicine. Then again, we are not specialized in these disciplines. Essentially, what we are doing is "tricking" living organisms by copying some significant biological aspects. Unlike bio-inspired robotics, we are not concerned with imitating or copying living beings' mechanisms in their complexity. In short, we do not want our fish to look like a real fish; we just need it to have the required features for the real fish around it to think it is.

Explore further: Can soft robots transform health care, gaming, and other fields?

add to favorites email to friend print save as pdf

Related Stories

Deciphering communication: learning from robots

Jan 06, 2012

(PhysOrg.com) -- An experiment led by Laurent Keller at the University of Lausanne (UNIL) and by Steffen Wischmann and Dario Floreano at EPFL shows that communication systems can evolve differently within ...

Robots show the evolution of altruism

May 23, 2011

Scientists in Switzerland have pieced together the puzzle on the evolution of unselfish behaviour. They simulated genetic evolution over hundreds of generations by using simple robots, providing evidence of ...

Robots acquire 'softness' and flexibility

Dec 05, 2013

Increasingly small robots that carry out their functions even inside the human body. No, this isn't a sci-fi dream but a close possibility. On one condition: the miniaturization of these devices requires ...

Recommended for you

A robot dives into search for Malaysian Airlines flight

Apr 18, 2014

In the hunt for signs of Malaysian Airlines flight MH370—which disappeared on March 8 after deviating for unknown reasons from its scheduled flight path—all eyes today turn to a company that got its start ...

Simplicity is key to co-operative robots

Apr 16, 2014

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

Apr 16, 2014

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 0

More news stories

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...