Could power generated from swimming laps create the next wave in sustainable energy?

December 16, 2013 by Will Ferguson
Could power generated from swimming laps create the next wave in sustainable energy?
Wake Forest sophomore Yinger "Eagle" Jin ('16) demonstrates his wave-powered electric generator in the pool in Reynolds Gym. The system harnesses the wave action as it compresses air inside the tube, which turns a small turbine that generates electricity.

With the help of an oscillating water column and a summer undergraduate research grant, sophomore Yinger 'Eagle' Jin discovered waves made by swimmers in the campus pool produce enough electricity to power 10 100-watt lightbulbs for a day.

Jin's research, inspired by Assistant Professor of Mathematics Sarah Mason's first-year seminar class on the mathematics of and funded by the URECA Center, lends new insights into how wave energy is captured and used.

Jin constructed an , one of the most productive wave energy converters available, to test the amount of electricity that could feasibly be produced by the pool's . It uses a large volume of moving water (in the case of Wake Forest's Reynolds Gym pool, the waves generated by daily swimmers) as a piston in a cylinder. Air is forced out of the column as a wave rises and fresh air is drawn in as the wave falls. This movement of air turns a turbine at the top of the column, which ultimately converts the wave energy to electricity.

"During the class we looked at the amount of energy that can be produced from on Wake Forest's campus," Mason said. "Wave energy was something we talked about but obviously we don't have an ocean here and lakes don't typically generate many waves."

Jin, an avid swimmer, thought there might be enough waves in the campus pool to generate a small amount of electricity.

"We are talking a very small scale, but recreational swimmers produce a decent amount of waves," Jin said. "The concept is similar to the idea that at a regular gym you have exercise bikes that are powered by someone spinning the pedals."

Jin calculated that on an average day during the school year, the swimming pool is open 10 hours and 10 people swim each hour. He said if each person swims butterfly stroke, collectively they will generate enough waves to produce 10 kilowatt-hours of electricity.

Jin used his to produce a small amount of and to measure the period and height of waves in the pool over the course of a day. He then used this data to build a mathematical model for determining electrical energy output from waves. Rob Erhardt, a statistician in Wake Forest's math department, helped Jin and Mason with their calculations and applying the math to the specific case of the pool.

Mason said the plan is to follow up on the research she and Jin conducted over the summer with a trip to North Carolina's coast.

"There is certainly room for continuation in Eagle's project; in particular one publishable goal is to calculate how much energy could be produced through off the coast of North Carolina," she said. "We have computed rough estimates but would need to factor in more details and be more precise if we wanted to get an accurate prediction."

Nevertheless, she said their initial estimates show North Carolina waves have tremendous energy potential.

Explore further: Powering Australia with waves

Related Stories

Powering Australia with waves

August 17, 2010

Wave energy is surging ahead as a viable source of renewable energy to generate electricity -- with Australia's southern margin identified by the World Energy Council as one of the world's most promising sites for wave-energy ...

UK Dyson Award picks wave power generator

September 15, 2013

( —The wind generates sea waves and that energy has scientists interested in how to harness that power, in a field called wave energy. Harnessing energy from the waters has the potential to be an exceptionally ...

Oceanlinx celebrates wave-power unit launch in Australia

November 4, 2013

( —Oceans carry enough potential energy to make a difference. The devil is in the details. Finding a way to harness all that power had prevented wave power from being seen as a practical solution but now technologists ...

The destructive power of sound waves

December 16, 2013

Researchers at the University of Arizona College of Engineering have come up with a novel way to help the U.S. Air Force dispose of stockpiles of dangerous chemicals – using nothing more than sound waves.

Recommended for you

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Radio frequency 'harvesting' tech unveiled in UK

September 30, 2015

An energy harvesting technology that its developers say will be able to turn ambient radio frequency waves into usable electricity to charge low power devices was unveiled in London on Wednesday.

Professors say US has fallen behind on offshore wind power

September 29, 2015

University of Delaware faculty from the College of Earth, Ocean, and Environment (CEOE), the College of Engineering and the Alfred Lerner School of Business and Economics say that the U.S. has fallen behind in offshore wind ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 16, 2013
"...enough to power 10 100-watt light bulbs for a day..."

"...collectively they will generate enough waves to produce 10 kilowatt-hours of electricity."

10 * 100w = 1kW
1kW * 24hrs = 24kW-hr

24kWh ≠ 10kWh

I guess in the first paragraph, they are assuming the bulb is only on for 10 hours of the day...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.