Polymers can be semimetals

Dec 09, 2013
Polymers can behave like insulators, semiconductors and metals – as well as semimetals. Twenty researchers, under the leadership of Xavier Crispin, Docent in organic electronics at Linköping University, are behind the breakthrough published in Nature Materials.

Polymers can behave like insulators, semiconductors and metals – as well as semimetals. Twenty researchers, under the leadership of Xavier Crispin, Docent in organic electronics at Linköping University, are behind the breakthrough published in Nature Materials.

Traditional plastics, or polymers, are electrical insulators. In the seventies a new class of polymers that conduct electricity like semiconductors and metals was discovered by Alan J.Heeger, Alan G. MacDiarmid and Hideki Shirakawa. This was the motivation for their Nobel Prize in Chemistry year 2000. Now Xavier Crispin, Docent in organic electronics at Linköping University's Department of Science and Technology, has led a project where no fewer than twenty researchers from five universities worldwide have collaborated to prove that polymers can also be semimetals.

The results are published in an article in the prestigious journal Nature Materials, with Dr Crispin as principal author.

A few years ago Xavier Crispin discovered that conductive polymers can be thermoelectric. A thermoelectric material undergoes a diffusion of electronic charge carriers to the cold region when the material is submitted to a temperature gradient. As a result an electric potential is created between the cold and hot side of the material. This thermo-voltage is the basis of thermo-couples used for instance in an everyday oven thermometer.

"Our experiments yielded a high thermoelectric effect, a Seebeck effect, which indicated that we were dealing with semimetals. But we needed proof," says Dr Crispin.

This required talented people from various locations to gain an in-depth understanding of the phenomenon.

No less than twenty researchers from Sweden, Australia, Belgium, Norway and Denmark are co-authors of the article to be published in Nature Materials. Ten of them are from Linköping University, including five professors: Xavier Crispin, Magnus Berggren and Igor Zozoulenko from the Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, as well as Mats Fahlman, Division of Surface Physics and Chemistry, and Weimin Chen, Division of Functional Electronic Materials, both at the Department of Physics, Chemistry and Biology.

"It has been very impressive to see how Xavier Crispin has led this. We have a fantastic environment for materials research at Linköping University, with world-leading expertise. We are all friends in the system and we've been able to produce this article without joint funding," says Magnus Berggren, professor or organic electronics.

The theoretical input of Igor Zozoulenko, advanced spectroscopic analysis by Mats Fahlman and Weimin Chen at Linköping University, as well as state-of-the-art polymer samples and morphology studies by research colleagues in Australia, Belgium, Norway and Denmark showed the exact same thing: the , in this case a doped variant of the plastic PEDOT, behaves exactly like a semimetal, which also explains the high Seebeck effect.

Thermoelectric generators are available on the market today, but these are made from alloys of bismuth and the semimetal tellurium. Unlike the polymers, these elements are both rare and expensive.

"These polymers are both easy and inexpensive to produce. That we now have an understanding of these phenomena will really drive developments forward, and will open up a new research field in ," says Prof Berggren.

The research was financed primarily by ERC, the European Research Council. In 2012 Dr Crispin was awarded an ERC Starting Grant of SEK 13 million.

Explore further: Electricity from waste heat with more efficient materials

More information: Olga Bubnova, Zia Ullah Khan, Hui Wang, Slawomir Braun, Drew R. Evans, Manrico Fabretto, Pejman Hojati-Talemi, Daniel Dagnelund, Jean-Baptiste Arlin, Yves H. Geerts, Simon Desbief, Dag W. Breiby, Jens W. Andreasen, Roberto Lazzaroni, Weimin M. Chen, Igor Zozoulenko, Mats Fahlman, Peter J. Murphy, Magnus Berggren, Xavier Crispin. "Semi-metallic polymers." Nature Materials (2013) DOI: 10.1038/nmat3824

Related Stories

Accidental discovery may lead to improved polymers

Apr 05, 2013

Chemical Engineering Professor Tim Bender and Post-Doctoral Fellow Benoit Lessard's discovery of an unexpected side product of polymer synthesis could have implications for the manufacture of commercial polymers used in sealants, ...

Electricity from waste heat with more efficient materials

Dec 05, 2013

Thermoelectric materials can convert waste heat directly into electricity. Tommi Tynell, M.Sc., who is a doctoral candidate at the Aalto University School of Chemical Technology, has developed hybrid thermoelectric materials ...

Recommended for you

Amino acids key to new gold leaching process

8 hours ago

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

Researchers create designer 'barrel' proteins

Oct 23, 2014

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 02, 2014
If you use the term "metal" to define a polymer that conducts electricity, several like TTF and Poly-B-Phenylene do. They also can exhibit very unique conductive pathways. Like conducting current along one spacial plane, or direction but not others. That trait should alone make that polymer function as a circuit. I worked in this field 30 years ago, and don't know if this kind of work was pursued.