Plasma loss mechanisms from Saturn's magnetosphere

Dec 04, 2013
Saturn. Photo: NASA

Since the first up-close observations of Saturn, made by the Pioneer 11 probe in 1979, a great deal has been learned about the dynamics of the gas giant's magnetosphere. In-depth observations made by the Cassini orbiter, which has been circling Saturn since 2004, have revealed fundamental differences between the behavior of Saturn's magnetosphere and that of the Earth's magnetosphere.

Earth's magnetospheric plasma is largely populated by ions captured from the , whereas Saturn's plasma comes predominantly from water vapor that spews from massive geysers on the southern end of its icy moon Enceladus. Ionized from Enceladus streams out at 12 to 250 kilograms (27 to 551 pounds) per second, yet observations show that the concentration of plasma in Saturn's magnetosphere is at a relatively steady level. This discrepancy has left researchers searching for potential plasma loss mechanisms. In a review, Thomsen highlights the progress made in recent years in understanding this question.

According to the author, the main force driving plasma from Saturn's magnetosphere derives from the planet's fast rotation, which takes just 10.7 hours and produces currents in the magnetosphere that drive the plasma outward. These currents do not produce a uniform outflow—observations have shown interlocking fingers of cold inner magnetospheric plasma flowing outward and hot outer magnetospheric plasma flowing inward to take its place. Once it reaches the outer magnetosphere, the author says, the plasma can be lost to the solar wind, either crossing through the magnetopause or being swept down the magnetotail.

Observations made using the Cassini orbiter have shown mass loss through magnetic reconnection in the magnetotail, but current estimates suggest that this mechanism is inadequate to remove all of the plasma emerging from the inner .

Explore further: SpaceX breaks ground on Texas rocket launch site

More information: Saturn's Magnetospheric Dynamics, Geophysical Research Letters, DOI: 10.1002/2013GL057967 , 2013

add to favorites email to friend print save as pdf

Related Stories

'Tis the season—for plasma changes at Saturn

May 03, 2013

(Phys.org) —A University of Iowa undergraduate student has discovered that a process occurring in Saturn's magnetosphere is linked to the planet's seasons and changes with them, a finding that helps clarify ...

Enceladus leaves plasma bubbles in its wake

Apr 15, 2010

(PhysOrg.com) -- Observations of how Saturn’s moon Enceladus interacts with its environment show it leaves a complex pattern of ripples and bubbles in its wake. Sheila Kanani will be presenting the results ...

Mercury's magnetic field measured by MESSENGER orbiter

May 15, 2012

Researchers working with NASA's Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft report the frequent detections of Kelvin-Helmholtz (KH) waves at the edge of the innermost ...

Earth's magnetosphere behaves like a sieve

Oct 24, 2012

ESA's quartet of satellites studying Earth's magnetosphere, Cluster, has discovered that our protective magnetic bubble lets the solar wind in under a wider range of conditions than previously believed.

Recommended for you

Getting to the root of the problem in space

39 minutes ago

When we go to Mars, will astronauts be able to grow enough food there to maintain a healthy diet? Will they be able to produce food in NASA's Orion spacecraft on the year-long trip to Mars? How about growing ...

The difference between CMEs and solar flares

3 hours ago

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explain ...

Scientific instruments of Rosetta's Philae lander

3 hours ago

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

How ancient impacts made mining practical

5 hours ago

About 1.85 billion years ago, in what would come to be known as Sudbury Canada, a 10 kilometer wide asteroid struck with such energy that it created an impact crater 250 kilometers wide. Today the chief industry of Sudbury ...

User comments : 0