How persistent bacteria are able to avoid antibiotics

Dec 29, 2013

The mechanism by which some bacteria are able to survive antibacterial treatment has been revealed for the first time by Hebrew University of Jerusalem researchers.  Their work could pave the way for new ways to control such bacteria. 

In addition to the known phenomenon by which some achieve resistance to antibiotics through mutation, there are other types of bacteria, known as "persistent bacteria," which are not resistant to the antibiotics but simply continue to exist in a dormant or inactive state while exposed to antibacterial treatment.  These bacteria later "awaken" when that treatment is over, resuming their detrimental tasks, presenting a dilemma as to how to deal with them. .

Until now, it had been known that there is a connection between these kind of bacteria and the naturally occurring toxin HipA in the bacteria, but scientists did not know the cellular target of this toxin and how its activity triggers dormancy of the bacteria.

Now, the Hebrew University researchers, led by Prof. Gadi Glaser of the Faculty of Medicine and Prof. Nathalie Balaban of the Racah Institute of Physics, have been able to demonstrate how this comes about. Their research showed that when attack these bacteria, the HipA toxin disrupts the chemical "messaging" process necessary for nutrients to build proteins. This is interpreted by the bacteria as a "hunger signal" and sends them into an inactive state, (dormancy) in which they are able to survive until the antibacterial treatment is over and they can resume their harmful activity.

 The research on persistent bacteria has been conducted in Prof. Balaban's lab for several years, focusing on the development of a biophysical understanding of the phenomenon.  It will be combined with other work being done in Prof. Glaser's laboratory focusing on combating persistent bacteria, in the hope of leading to more effective treatment for bacterial infections.

Working on the project in Prof. Glaser's lab were doctoral student Ilana Kaspy and in the lab of Prof. Balaban by doctoral students Eitan Rotem and Noga Weiss and Dr. Irine Ronin.

Explore further: Bacteria use lethal cytotoxins to evade antibiotic treatment

add to favorites email to friend print save as pdf

Related Stories

X-rays reveal the self-defence mechanisms of bacteria

Sep 14, 2012

A research group at Aarhus University has gained unique insight into how bacteria control the amount of toxin in their cells. The new findings can eventually lead to the development of novel forms of treatment ...

Recommended for you

Some anti-inflammatory drugs affect more than their targets

12 hours ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

User comments : 0