How persistent bacteria are able to avoid antibiotics

December 29, 2013

The mechanism by which some bacteria are able to survive antibacterial treatment has been revealed for the first time by Hebrew University of Jerusalem researchers.  Their work could pave the way for new ways to control such bacteria. 

In addition to the known phenomenon by which some achieve resistance to antibiotics through mutation, there are other types of bacteria, known as "persistent bacteria," which are not resistant to the antibiotics but simply continue to exist in a dormant or inactive state while exposed to antibacterial treatment.  These bacteria later "awaken" when that treatment is over, resuming their detrimental tasks, presenting a dilemma as to how to deal with them. .

Until now, it had been known that there is a connection between these kind of bacteria and the naturally occurring toxin HipA in the bacteria, but scientists did not know the cellular target of this toxin and how its activity triggers dormancy of the bacteria.

Now, the Hebrew University researchers, led by Prof. Gadi Glaser of the Faculty of Medicine and Prof. Nathalie Balaban of the Racah Institute of Physics, have been able to demonstrate how this comes about. Their research showed that when attack these bacteria, the HipA toxin disrupts the chemical "messaging" process necessary for nutrients to build proteins. This is interpreted by the bacteria as a "hunger signal" and sends them into an inactive state, (dormancy) in which they are able to survive until the antibacterial treatment is over and they can resume their harmful activity.

 The research on persistent bacteria has been conducted in Prof. Balaban's lab for several years, focusing on the development of a biophysical understanding of the phenomenon.  It will be combined with other work being done in Prof. Glaser's laboratory focusing on combating persistent bacteria, in the hope of leading to more effective treatment for bacterial infections.

Working on the project in Prof. Glaser's lab were doctoral student Ilana Kaspy and in the lab of Prof. Balaban by doctoral students Eitan Rotem and Noga Weiss and Dr. Irine Ronin.

Explore further: X-rays reveal the self-defence mechanisms of bacteria

Related Stories

X-rays reveal the self-defence mechanisms of bacteria

September 14, 2012

A research group at Aarhus University has gained unique insight into how bacteria control the amount of toxin in their cells. The new findings can eventually lead to the development of novel forms of treatment for bacterial ...

Bacteria use lethal cytotoxins to evade antibiotic treatment

November 18, 2013

In spite of the fact that the first antibiotics were discovered almost a century ago, infectious diseases such as tuberculosis, encephalitis and meningitis are still serious diseases for humans in the twenty-first century. ...

Recommended for you

Sixth sense: How do we sense electric fields?

October 13, 2015

A variety of animals are able to sense and react to electric fields, and living human cells will move along an electric field, for example in wound healing. Now a team lead by Min Zhao at the UC Davis Institute for Regenerative ...

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.