ORNL devises recipe to fine-tune diameter of silica rods

Dec 16, 2013

By controlling the temperature of silica rods as they grow, researchers at the Department of Energy's Oak Ridge National Laboratory could be setting the stage for advances in anti-reflective solar cells, computer monitors, TV screens, eye glasses and more.

The goal of fabricating fixed-size one-dimensional silica structures and being able to precisely control the diameter during growth has long eluded scientists. Now, Panos Datskos and Jaswinder Sharma have demonstrated what they describe as the addressable local control of diameter of each segment of the silica rod.

"In nature, many intricate structures develop and grow in response to their environments," said Sharma, a Wigner Fellow and corresponding author of the Angewandte Chemie International Edition paper that outlines the process. "For example, in addition to genotype, shell shape is also controlled by the local environment in many oysters and scallops."

Taking a cue from nature, by manipulating the during growth, Sharma and co-author Datskos were able to control thickness while retaining control of each segment of the rod separately.

When the researchers increased growth temperatures, the segment diameter became smaller. By increasing incubation times, they obtained longer segments at the same temperature. Higher temperatures for the same incubation time produced longer segments of the glass-like silica rods.

It appears that the correlation between temperature and diameter is a result of the relationship between temperature and the size of the emulsion droplet, according to the authors, who discovered that the higher the , the smaller the emulsion droplet.

The researchers envision this finding leading to further opportunities that require vertically aligned arrays of silica rods for gradually changing a refractive index on a large scale. The paper, titled "Synthesis of Segmented Silica Rods by Regulation of the Growth Temperature," is available at http://onlinelibrary.wiley.com/doi/10.1002/anie.201308140/full.

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Huge grains of copper promote better graphene growth

Dec 06, 2013

To technology insiders, graphene is a certified big deal. The one-atom thick carbon-based material elicits rhapsodic descriptions as the strongest, thinnest material known. It also is light, flexible, and ...

Tiny lasers light up future electronics

Nov 18, 2013

(Phys.org) —Faster, smaller electronics are one step closer with researchers from The Australian National University successfully making the first room temperature lasers from gallium arsenide nanowires.

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.