New optimized coatings for implants reduce risk of infection

Dec 18, 2013
New optimized coatings for implants reduce risk of infection
This is a model for inverse humeral (shoulder) implant. Credit: Aalto University

Implants are commonly made from metals such as titanium alloys. These materials are being made porous during processing used to prepare them for medical use. Whereas this is important to ensure good contact between the implant and the bone, this also allows dangerous bacteria to adhere and grow both on the surface as well as inside leading to increased risk of infection.

"Our work has focused on developing an analysis of surface treatments for commercial which reduces risk of infection," said Professor Michael Gasik at Aalto University. "What we wanted to do is find a way to avoid the formation of any undesirable products during the processing of the implant." "At the same time we needed to make sure that the bio-mechanical properties of the implant would remain intact and, even more, become better."

A thin coating of a biomaterial called Hydroxyapatite (HAP) or bioactive glass (BAG) is typically applied to orthopaedic and other implants to alter the surface properties. Such coatings improve the body ability to recognize a foreign object in a more friendly way and promote implant integration into surrounding tissues. During the heat treatment process, excessive stresses can cause premature cracking and removal of the coating layer. This can lead to the development of unsuitable compounds and increase the risk of infection.

"Normally, implants require a certain level of porosity and elasticity to function properly," added Professor Gasik. "The challenge for us was to ensure full functionality of the implant while maintaining sufficient density of the coating during the heat treatment process." "We have proven that by adding a certain amount of another compound called beta-tricalcium phosphate (ß-TCP) such stresses are reduced and therefore preserves the biomaterial coating better." Thus minimizing the risk of coating destruction and bacterial adhesion, and improving cell proliferation, allows the implant surface to achieve its function in an optimal way.

New optimized coatings for implants reduce risk of infection
This shows the shoulder implant two main parts. Credit: Aalto University

This research is significant in the battle against the spread of . An estimated 10-15% of post-implant complications are caused by bacterial infections. Post-operative diseases are becoming more challenging and developing new treatments that are resistant to infection are crucial. In response to this research, Aalto University and partner manufacturers have already started developing new experimental devices for advanced testing of biomaterials at the conditions most close to life. Besides proving developed technology, it will allow high-throughput screening of the biomaterials with substantially better properties.

New optimized coatings for implants reduce risk of infection
This is a computer tomography of porous titanium coating made on the implant surface. Credit: Aalto University

The research was conducted at Aalto University and supported by Tekes, the Finnish national innovation agency, and by the EU FP6 project "Meddelcoat".

Explore further: Producing biodegradable plastic just got cheaper and greener

More information: Michael Gasik, Anu Keski-Honkola, Yevgen Bilotsky, Michael Friman: DEVELOPMENT AND OPTIMIZATION OF HYDROXYAPATITE - ß-TCP FUNCTIONALLY GRADATED BIOMATERIAL. Journal of the Mechanical Behavior of Biomedical Materials (2013), dx.doi.org/10.1016/j.jmbbm.2013.11.017

Michael Gasik, Lieve Van Mellaert, Dorothée Pierron, Annabel Braem, Dorien Hofmans, Evelien De Waelheyns, Jozef Anné, Marie-Françoise Harmand, Jozef Vleugels. REDUCTION OF BIOFILM INFECTION RISKS AND PROMOTION OF OSTEOINTEGRATION FOR OPTIMIZED SURFACES OF TITANIUM IMPLANTS. Advanced Healthcare Materials, 1, No. 1 (2012), 117.

Related Stories

3-D printed implants may soon fix complex injuries

Dec 12, 2013

In an age where 3-D printers are becoming a more and more common tool to make custom designed objects, some researchers are using the technology to manufacture replacement parts for the most customized a ...

Recommended for you

Aluminum clusters shut down molecular fuel factory

14 hours ago

Despite decades of industrial use, the exact chemical transformations occurring within zeolites, a common material used in the conversion of oil to gasoline, remain poorly understood. Now scientists have ...

New catalyst does more with less platinum

15 hours ago

Platinum is a highly reactive and in-demand catalyst across the chemical and energy industries, but a team of University of Wisconsin-Madison and Georgia Institute of Technology scientists could reduce the ...

Learning from biology to accelerate discovery

18 hours ago

A spider's web is one of the most intricate constructions in nature, but its precious silk has more than one use. Silk threads can be used as draglines, guidelines, anchors, pheromonal trails, nest lining, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.