Nontoxic quantum dot research improves solar cells

Dec 11, 2013 by Nancy Ambrosiano
Schematic of the quantum dot sensitized solar cell (QDSSC) architecture (CISeS QDs are red triangles, the contacts are omitted).  This device design avoids QD-to-QD carrier transport completely (limits other QD solar cells), and benefits from more complete light absorption and a modular design. Right: Current-density versus voltage characteristics of a record QDSSC certified by NREL. Right inset: Power conversion efficiency as a function of time since fabrication (showing long term stability) and a transmission electron microscope image of a QD/TiO2 heterojunction.

Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve unprecedented longevity and efficiency, according to a study by Los Alamos National Laboratory and Sharp Corporation.

"For the first time, we have certified the performance of a quantum dot sensitized solar cell at greater than 5 percent, which is among the highest reported for any quantum dot solar cell," said Hunter McDaniel, a Los Alamos postdoctoral researcher and the lead author on a paper appearing in Nature Communications this week. "The robust nature of these devices opens up the possibility for commercialization of this emerging low-cost and low-toxicity photovoltaic technology," he noted.

The reported solar cells are based on a new generation of nontoxic quantum dots (not containing either lead or cadmium as do most used in solar cells). These dots are based on copper indium selenide sulfide and are rigorously optimized to reduce charge-carrier losses from surface defects and to provide the most complete coverage of the solar spectrum.

Hunter McDaniel, Los Alamos National Laboratory postdoctoral researcher, works in the laboratory developing next-generation quantum dots that could revolutionize photovoltaic technology.

"The new were certified by the National Renewable Energy Laboratory (NREL) and demonstrated a record power-conversion efficiency for this type of devices," according to Victor Klimov of Los Alamos, director of the Center for Advanced Solar Photophysics (CASP), a DOE Energy Frontier Research Centers (EFRC). In addition to CASP-EFRC, this research has been also supported via a cooperative research agreement with Sharp Corporation.

Explore further: Nanoscale engineering boosts performance of quantum dot light emitting diodes

More information: The paper, "An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells" is scheduled for online publication in Nature Communications on Dec. 10, 2013.

Related Stories

Optical materials: Solar cells step up

Nov 20, 2013

The Sun is our most promising source of clean and renewable energy. The energy that reaches the Earth from the Sun in an hour is almost equivalent to that consumed by humans over a year. Solar cells can tap ...

New nanomaterial increases yield of solar cells

Aug 26, 2013

Researchers from the FOM Foundation, Delft University of Technology, Toyota Motor Europe and the University of California have developed a nanostructure with which they can make solar cells highly efficient. ...

Recommended for you

'Exotic' material is like a switch when super thin

18 hours ago

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...