NIST calibration tools to encourage use of novel medical imaging technique

Dec 05, 2013 by Laura Ost
NIST calibration tools to encourage use of novel medical imaging technique
NIST physicist Michael Boss positions a prototype NIST phantom (a calibration tool) in an ultralow-field magnetic resonance imaging scanner at the University of California at Berkeley. NIST phantoms are intended to help assess and validate this experimental imaging method, which offers advantages in diagnosing and monitoring of certain medical conditions. Credit: NIST

The National Institute of Standards and Technology (NIST) has developed prototype calibration tools for an experimental medical imaging technique that offers new advantages in diagnosing and monitoring of certain cancers and possibly other medical conditions.

NIST designed, constructed and tested two prototype phantoms for calibrating ultralow-field (ULF) magnetic resonance imaging (MRI) systems. Phantoms are widely used tools for quality control in medical imaging. They are generally objects with simple shapes but very well-defined responses to a specific type of imaging scanner. As their name implies, phantoms are stand-ins for the body, and are used to help optimize MRI machines to deliver the best possible medical images for a given type of tissue.

The NIST prototypes are the first standard calibration tools for ULF-MRI, offering a quantitative means to assess performance, validate the technique, and directly compare different experimental and clinical MRI scanners.

"Tissues that may look the same in clinical MRI can look very different in ULF-MRI, which provides new contrast mechanisms," NIST physicist Michael Boss says. "Our hope is that we can move this technique along to attract more interest from [industry] vendors."

MRI noninvasively images soft tissues based on measurements of how hydrogen nuclei—in the water that makes up much of the body—respond to magnetic fields. ULF-MRI enhances tissue contrast in particular types of MRI scans. Prostate tumors, for example, can be difficult to see with conventional MRI but show up clearly under ULF-MRI. ULF-MRI has also been used experimentally to image the brain, and tested in at least one nonmedical application, inspection of liquids at airports.

ULF-MRI also offers practical advantages: The instruments are simpler in design, lighter in weight and less expensive than regular MRI scanners. That's because ULF-MRI operates at much lower magnetic field strengths, measured in microteslas, thousands of times lower than conventional MRI, which operates at up to 3 teslas and requires huge magnets. The low magnetic field strength means ULF-MRI needs the most sensitive magnetometers available: SQUIDs (superconducting quantum interference devices). This is convenient because it makes ULF-MRI suitable for combining with other SQUID-based imaging techniques such as magnetoencephalography.

NIST staff previously designed phantoms for conventional MRI systems and also have extensive experience both making and using SQUIDs. NIST's new ULF-MRI phantoms are short plastic cylinders, shaped like hockey pucks but a bit smaller, containing six or 10 plastic jars filled with various salt solutions that become magnetized in a . Each phantom measures a different aspect of scanner performance such as spatial resolution. NIST researchers tested the new phantoms on both a conventional MRI system at the University of Colorado Health Sciences Center (Denver, Colo.) and an experimental ULF-MRI scanner at the University of California (UC) at Berkeley, where the technique was first demonstrated about a decade ago.

Tests results show the prototype phantoms are well-matched to ULF-MRI applications and allow direct comparison of ULF and clinical MRI system performance. NIST researchers now plan to incorporate design improvements based on lessons learned from the prototypes, with the aim of improving phantom stability and providing traceability to standard measurement units. NIST and UC Berkeley researchers also plan to work together to further develop ULF-MRI technology for detection of prostate and breast cancers.

NIST's phantoms for conventional MRI systems are currently being tested by hospitals and MRI manufacturers, and Sigma-K Corp. (Durham, N.C.) is developing methods for making copies for more widespread distribution under a NIST SBIR award.

Explore further: Finding faster-than-light particles by weighing them

More information: M.A. Boss, J.A. Mates, S.E. Busch, Paul SanGiorgio, S.E. Russek, K. Buckenmaier, K.D. Irwin, H.M. Cho, G.C. Hilton and J. Clarke. Prototype phantoms for characterization of ultra-low field magnetic resonance imaging. Magnetic Resonance in Medicine. Paper published online Nov. 26, 2013. DOI: 10.1002/mrm.25060.

add to favorites email to friend print save as pdf

Related Stories

MRI phantoms: Moving to the next stage

Jun 25, 2013

Magnetic resonance imaging (MRI) has become an indispensable tool for diagnosing, treating, and understanding a host of medical conditions, and the technology is evolving rapidly.

A natural boost for MRI scans

Oct 21, 2013

Magnetic resonance imaging (MRI) is a technique widely used in medicine to create images of internal organs such as the heart, the lungs, the liver and even the brain. Since its invention in 1977, MRI has become a staple ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.