Negative resistivity leads to positive resistance in the presence of a magnetic field

Dec 11, 2013

In a paper appearing in Nature's Scientific Reports, Dr. Ramesh Mani, professor of physics and astronomy at Georgia State University, reports that, in the presence of a magnetic field, negative resistivity can produce a positive resistance, along with a sign reversal in the Hall effect, in GaAs/AlGaAs semiconductor devices.

The is a basic property of components known as resistors that occur in electrical circuits. Usually, the resistor serves to limit the electric current – the flow of electrons - to the desired value within the circuit in electronic applications. However, a large current through a resistor can also help to generate heat, and this principle is used in toasters, ovens, space heaters, and window defrosters. Resistors also occur in sensing applications as in strain gauges, gas sensors, etc., when the resistive element exhibits sensitivity to external stimuli. The of a material depends upon the material property called the resistivity. The material resistivity generally takes on positive values, which indicates that electrical energy is dissipated within the material, when a current is passed through it.

In research that is supported by grants from the U.S. Department of Energy and the U.S. Army Research Office, Mani examined the relation between the resistivity and the resistance of microwave photo-excited, very thin sheets of electrons in the presence of a magnetic field with his colleague Annika Kriisa from Emory University.

The motivation for this work came from the fact that, over the past decade, theoretical physics has concerned itself with the remarkable possibility that the material resistivity can take on negative values in special systems, called two-dimensional electron gases (2DEG), at low temperatures in the presence of a magnetic field, when the 2DEG's are illuminated with microwaves – the same type of microwaves that occur in microwave ovens. That is, scientists have suggested that cooking a 2DEG with microwaves in a magnetic field can help to produce negative resistivity. Yet, the consequences of a negative resistivity were not well understood. The work of Mani and Kriisa helps to clear up some mysteries.

The relation between the resistivity and the resistance is straightforward in the absence of a magnetic field: a positive resistivity will lead to a positive resistance and a negative resistivity will lead to a negative resistance. The application of a magnetic field generates something called a Hall effect in the sample that complicates the relation between the resistivity and the resistance at finite magnetic fields. The reason for the complication is that, in a small , the Hall effect can be large compared to the resistive effect in very clean 2D electron systems. In such a situation, the Hall effect decides how the system is going to respond to the negative resistivity. This work by Mani and Kriisa shows that the 2D electron system can show a positive resistance in response to a negative resistivity as the Hall effect reverses its sign.

This result will help to further understand the proposed spectacular properties of systems exhibiting negative resistivity, as it also provides more insight into the intricacies of the Hall effect – an effect discovered by the American scientist E. H. Hall circa 1879.

Explore further: Size matters in the giant magnetoresistance effect in semiconductors

Related Stories

A step closer to composite-based electronics

Nov 25, 2013

Composite materials are of increasing interest to physicists. Typically, they are made of electrically conducting elements - such as spherical metallic or elongated carbon particles - embedded in an insulating ...

Electrons with a "split personality"

Nov 13, 2013

Some electrons in a superconducting material behave as if they were in a conventional metal, others as in an unconventional one – depending on the direction of their motion.

The ferromagnetic Kondo effect

Jul 24, 2013

A group of physicists that includes scientists of the International School for Advanced Studies (SISSA) of Trieste have shown how to obtain a particular case of a physical effect – so far never observed ...

Video: The Sun reverses its magnetic poles

Dec 09, 2013

This visualization shows the position of the sun's magnetic fields from January 1997 to December 2013. The field lines swarm with activity: The magenta lines show where the sun's overall field is negative ...

Recommended for you

Better thermal-imaging lens from waste sulfur

13 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...