NASA's latest space technology small satellite phones home

Dec 06, 2013 by David E. Steitz

PhoneSat 2.4, NASA's next generation smartphone cubesat has phoned home. The tiny spacecraft that uses an off-the-shelf smartphone for a brain has completed checkout and sent back data confirming all systems are "go" for the spry spacefarer.

PhoneSat 2.4, a cube approximately four inches square, weighs only about 2.2 pounds, and was developed at NASA's Ames Research Center in Moffett Field, Calif. It is first of the PhoneSat family to use a two-way S-band radio, allowing engineers to command the satellite from Earth. It is confirming the viability of using smartphones and other commercially available electronics in satellites destined for low-Earth orbit.

"It's great to hear from NASA's most recent cubesat spacecraft," said Michael Gazarik, NASA's associate administrator for space technology in Washington. "NASA is committed to opening up the high frontier to a new generation of explorers who can take advantage of these sorts of small satellites to do science and technology development at a fraction of the cost of larger, more complex spacecraft."

In April, NASA successfully demonstrated a one-week mission with PhoneSat 1.0. With an expected orbital lifetime of up to one year, PhoneSat 2.4 will measure how well commercially developed components perform in space over a long period of time. This innovative application of commercially developed technologies for use in space provides for low-cost, low-risk, highly repetitive missions to meet some unique NASA science and exploration needs.

The spacecraft was among 11 agency-sponsored cubesats deployed Nov. 19 by a NASA-built Nanosatellite Launch Adapter System aboard an Orbital Sciences Minotaur 1 rocket for the U.S. Air Force from the Mid-Atlantic Regional Spaceport at NASA's Wallops Flight Facility in Virginia.

PhoneSat 2.4 also will test a system to control the orientation of the cubesat in space. Like the earlier PhoneSat 1, PhoneSat 2.4 uses a Nexus S smartphone made by Samsung Electronics running Google's Android operating system. Santa Clara University in California is providing the ground station for the mission.

The smartphone provides many of the functions the satellite needs to operate, such as computation, memory, ready-made interfaces for communications, navigation and power, all assembled in a rugged package before launch. Data from the satellite's subsystems, including the smartphone, the power system and orientation control system are being downlinked over amateur radio at a frequency of 437.425MHz.

The next PhoneSat, version 2.5, is scheduled to launch in February, hitching a ride aboard a commercial SpaceX rocket. That spacecraft also is expected to perform in Earth orbit for several months and continue testing the two-way radio and orientation systems. The PhoneSat Project is managed by the Engineering Directorate at NASA's Ames Research Center in Moffett Field, Calif.

The PhoneSat series of missions are pathfinders for NASA's next Small Spacecraft Technology mission, the Edison Demonstration of Smallsat Networks (EDSN). The EDSN mission is composed of eight identical 1.5-unit cubesats, which are each approximately 4 inches by 4 inches by 6 inches in size and weighing about 5.5 pounds, that will be deployed during a launch from Kauai, Hawaii in 2014.

The EDSN mission will demonstrate the concept of using many small spacecraft in a coordinated cluster to study the space environment and space-to-space communications techniques. The eight EDSN satellites each will have a Nexus S smartphone for satellite command and data handling, with a scientific instrument added as a payload on each spacecraft.

During EDSN, each cubesat will make science measurements and transmit the data to the others while any one of them can then transmit all of the collected data to a ground station. This versatility in command and control could make possible large swarms of satellites to affordably monitor the Earth's climate, space weather and other global-scale phenomena.

The PhoneSat Project is one of many development projects within NASA's Small Spacecraft Technology Program, one of nine programs within NASA's Space Technology Mission Directorate. The Small Spacecraft Technology Program develops and matures technologies to enhance and expand the capabilities of small spacecraft, with a particular focus on communications, propulsion, pointing, power, and autonomous operations.

Explore further: NASA launches next generation PhoneSat, Ames-developed launch adapter

More information: For more information about PhoneSat, the Small Spacecraft Technology Program and NASA's Space Technology Mission Directorate, visit: www.nasa.gov/spacetech

add to favorites email to friend print save as pdf

Related Stories

NASA successfully launches three smartphone satellites

Apr 23, 2013

Three smartphones destined to become low-cost satellites rode to space Sunday aboard the maiden flight of Orbital Science Corp.'s Antares rocket from NASA's Wallops Island Flight Facility in Virginia.

PhoneSat: Smart, small and sassy

Jan 03, 2013

(Phys.org)—The fast-paced proliferation and popularity of mobile devices here on Earth, like smartphones loaded with powerful operating systems, will find a new niche market– this time in space, thanks ...

NASA launches exo-brake parachute from ISS

Nov 27, 2013

Mission controllers have confirmed that a small satellite launched from the International Space Station last week has successfully entered its orbit. Soon it will demonstrate two new technologies including ...

Recommended for you

The wake-up call that sent hearts racing

16 minutes ago

"But as the minutes ticked by, the relaxed attitude of many of us began to dissolve into apprehension. Our levels of adrenaline and worry began to rise."

US-India to collaborate on Mars exploration

9 hours ago

The United States and India, fresh from sending their own respective spacecraft into Mars' orbit earlier this month, on Tuesday agreed to cooperate on future exploration of the Red Planet.

Swift mission observes mega flares from a mini star

9 hours ago

On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series ...

Sandblasting winds shift Mars' landscape

14 hours ago

High winds are a near-daily force on the surface of Mars, carving out a landscape of shifting dunes and posing a challenge to exploration, scientists said Tuesday.

PanSTARRS K1, the comet that keeps going

16 hours ago

Thank you K1 PanSTARRS for hanging in there! Some comets crumble and fade away. Others linger a few months and move on. But after looping across the night sky for more than a year, this one is nowhere near ...

User comments : 0