New method for determining protein structure has major implications for drug development

Dec 20, 2013
Researchers Wang and Nelson.

Research involving scientists from Trinity College Dublin has led to a major breakthrough that could streamline the process used to determine the structure of proteins in cell membranes. This will have major implications for drug-related research because almost 50% of drugs on the market target these proteins.

Proteins in cell membranes are vital for the everyday functioning of complex cellular processes. They act as transporters to ensure that specific molecules enter and leave our cells, as signal interpreters important in decoding messages and initiating responses, and as agents that speed up appropriate responses. But to understand how they work, and how drugs can be made to target them, it is vital to determine their precise atomic 3-D structure. A major challenge is the production of large membrane crystals used in this pursuit.

A research group led by Professor of Membrane Structural and Functional Biology at Trinity, Martin Caffrey, developed a high-throughput method for growing membrane protein crystals that makes use of the 'Lipid Cubic Phase' (LCP). The LCP uses a fat-based media to grow these crystals in.

The crystals are then transferred to specialised circular arenas in which they interact with X-rays emitted by charged particles that race around at close to the speed of light. Scientists later examine the precise pattern left by scattered X-ray particles after they have collided with the crystals to determine their precise structure. Professor Brian Kobilka was awarded his share in the 2012 Nobel Prize in Chemistry, in part for work that made use of the LCP.

Recently, a new method for determining membrane protein structures that uses an X-ray-free laser showed great promise. However, it required huge numbers of protein crystals to generate a clear picture of their structure as only 1 in 10,000 was hit in a way that produced useable data. In the breakthrough, Professor Caffrey, as part of a large team of scientists, used the fat-based LCP media in which the were grown to jet them across the laser at a relatively slow pace. This slower pace translated into a vastly improved 'hit rate', which in turn provided a more efficient profiling of the protein structure.

The scientists used a major drug target as their membrane protein of interest in this study. Abbreviated as '5-HT2B', this protein is a cell receptor for serotonin, which is often linked to happiness and the feeling of well-being. The scientists were able to determine the receptor structure to good resolution, as well as showcasing the vastly improved hit rate and ability to grow crystals in the medium in which they are delivered to the laser, which confers further method-related benefits.

Professor of Membrane Structural and Functional Biology at Trinity, Martin Caffrey, said: "This work represents a major breakthrough and a landmark in the membrane structural and functional biology field. Because the data were collected under conditions that were free from radiation damage, and because the research was conducted at a temperature of 20 °C, which is physiologically useful, the solved structure provides a more reliable representation of how the receptor appears within the body."

Explore further: Scientists decode serotonin receptor at room temperature

add to favorites email to friend print save as pdf

Related Stories

X-ray laser brings cellular messengers into focus

May 10, 2013

Last year's Nobel Prize in Chemistry – shared by Stanford School of Medicine Professor Brian Kobilka and Robert Lefkowitz of Duke University – recognized groundbreaking research in G protein-coupled receptors (GPCRs). GPCRs are embedded in cell membranes. They i ...

MU researchers develop advanced 3-D 'force microscope'

Dec 17, 2013

Membrane proteins are the "gatekeepers" that allow information and molecules to pass into and out of a cell. Until recently, the microscopic study of these complex proteins has been restricted due to limitations of "force ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

UAE reports 12 new cases of MERS

Health authorities in the United Arab Emirates have announced 12 new cases of infection by the MERS coronavirus, but insisted the patients would be cured within two weeks.