New mechanism that permits selective capture of microRNAs in nanovesicles that shuttle between cells

Dec 20, 2013

A team of CNIC researchers directed by Prof. Francisco Sánchez-Madrid (Universidad Autónoma de Madrid & CNIC) has described for the first time how microRNAs— small RNA molecules that regulate the expression of specific genes—are encapsulated in nanovesicles that shuttle between cells.

The role of microRNAs (miRNAs) is fundamental for the correct moment-to-moment adjustment in the expression of . "Before this study, we already knew that these small molecules could be packaged into small vesicles and exported to the extracellular space, to be later captured by other cells and in this way play an important role in intercellular communication," explains CNIC researcher Carolina Villarroya, the first author on the study.

What was not known until now was the mechanism by which miRNAs are encapsulated and exported. And this is precisely what graduate researcher Villarroya and Dr. María Mittelbrunn—from Prof. Sánchez Madrid's group—have discovered, working closely with Dr. Fátima Sánchez Cabo of the Bioinformatics Unit and Dr. Jesús Vázquez of the Proteomics Unit.

The article describes how a specific group of miRNAs that are actively exported in nanovesicles from human T lymphocytes share specific nucleotide sequence patterns called EXOmotifs. When these EXOmotifs are mutated, export of these miRNAs is impeded; and when they are introduced into other miRNAs, export is facilitated. EXOmotifs provide the binding site for a protein called hnRNPA2B1, which is responsible for transporting miRNAs to the interior of nanovesicles.

hnRNPA2B1 is also implicated in the transport of the genomic RNA of viruses such as HIV to sites of exit to the cell exterior. This establishes a parallel between the secretion of vesicles loaded with RNA and the production of viruses that parasitize the cellular machinery to extend infection.

The discovery suggests a new route for packaging RNA molecules of interest into nanovesicles, which have enormous potential as vehicles for gene therapy, vaccines and antitumor treatments. These findings form the basis of a new patent by the researchers and their institutions the CNIC and the UAM.

The results of the study has been published in Nature Communications.

Explore further: New lab technique reveals structure and function of proteins critical in DNA repair

Related Stories

New fluorescent tools for cancer diagnosis

May 24, 2013

In recent years, microRNAs (miRNAs) and other non-coding RNAs are small molecules that help control the expression of specific proteins. In recent years they have emerged as disease biomarkers. miRNA profiles have been used ...

Study links 23 microRNAs to laryngeal cancer

Sep 13, 2011

A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

Molecular switch affects panic disorder

Apr 15, 2011

Panic disorder sufferers will tell you the attacks are some of the most sudden, frightening and uncomfortable experiences ever. But what makes some people susceptible to these attacks and others not? Studies of twins point ...

Recommended for you

The mechanics of life

Apr 16, 2015

An interdisciplinary research team formed by Otger Campàs, assistant professor in the Department of Mechanical Engineering at the University of California, Santa Barbara (UCSB), and colleague Jérome Gros, ...

New transitional stem cells discovered

Apr 16, 2015

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.