Massive stars mark out Milky Way's 'missing' arms

Dec 17, 2013
This shows the distribution of massive stars in the new study. Our location within the Galaxy is circled in black. Credit: J. Urquhart et al. Background image by Robert Hurt of the Spitzer Science Center.

A 12-year study of massive stars has reaffirmed that our Galaxy has four spiral arms, following years of debate sparked by images taken by NASA's Spitzer Space Telescope that only showed two arms.

The new research, which is published online today [17 December] in the Monthly Notices of the Royal Astronomical Society, is part of the RMS Survey, which was launched by academics at the University of Leeds.

Astronomers cannot see what our Galaxy, which is called the Milky Way, looks like because we are on the inside looking out. But they can deduce its shape by careful observation of its stars and their distances from us.

"The Milky Way is our galactic home and studying its structure gives us a unique opportunity to understand how a very typical spiral galaxy works in terms of where stars are born and why," said Professor Melvin Hoare, a member of the RMS Survey Team in the School of Physics & Astronomy at the University of Leeds and a co-author of the research paper.

In the 1950s astronomers used radio telescopes to map our Galaxy. Their observations focussed on clouds of gas in the Milky Way in which new stars are born, revealing four major arms. NASA's Spitzer Space Telescope, on the other hand, scoured the Galaxy for infrared light emitted by stars. It was announced in 2008 that Spitzer had found about 110 million stars, but only evidence of two .

The astronomers behind the new study used several radio telescopes in Australia, USA and China to individually observe about 1650 that had been identified by the RMS Survey. From their observations, the distances and luminosities of the massive stars were calculated, revealing a distribution across four spiral arms.

"It isn't a case of our results being right and those from Spitzer's data being wrong – both surveys were looking for different things," said Professor Hoare. "Spitzer only sees much cooler, lower mass stars – stars like our Sun – which are much more numerous than the massive stars that we were targeting."

Massive stars are much less common than their lower mass counterparts because they only live for a short time – about 10 million years. The shorter lifetimes of massive stars means that they are only found in the arms in which they formed, which could explain the discrepancy in the number of galactic arms that different research teams have claimed.

"Lower mass stars live much longer than massive stars and rotate around our Galaxy many times, spreading out in the disc. The gravitational pull in the two stellar arms that Spitzer revealed is enough to pile up the majority of stars in those arms, but not in the other two," explains Professor Hoare. "However, the gas is compressed enough in all four arms to lead to massive star formation."

Dr James Urquhart from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and lead author of the paper, said: "It's exciting that we are able to use the distribution of young massive stars to probe the structure of the Milky Way and match the most intense region of star formation with a model with four spiral arms."

Professor Hoare concludes, "Star formation researchers, like me, grew up with the idea that our Galaxy has four spiral . It's great that we have been able to reaffirm that picture."

Explore further: Image: Multicoloured view of supernova remnant

More information: mnras.oxfordjournals.org/conte… /11/13/mnras.stt2006

Related Stories

Hubble view of a special spiral galaxy

Oct 24, 2013

(Phys.org) —The image, captured by the NASA/ESA Hubble Space Telescope, shows part of NGC 3621, an unusual spiral galaxy located over 20 million light-years away in the constellation of Hydra (The Water ...

Hubble eyes a loose spiral galaxy

Nov 26, 2012

(Phys.org)—The Hubble Space Telescope has spotted the spiral galaxy ESO 499-G37, seen here against a backdrop of distant galaxies, scattered with nearby stars.

Video: Guide to our Galaxy

Nov 22, 2013

This virtual journey shows the different components that make up our home galaxy, the Milky Way, which contains about a hundred billion stars.

Pinwheeling across the sky

Jun 11, 2013

(Phys.org) —The face-on Pinwheel spiral galaxy is seen at ultraviolet wavelengths in this image taken by ESA's XMM-Newton space telescope.

Recommended for you

Image: Multicoloured view of supernova remnant

14 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

14 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

15 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

15 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

15 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.