When liquids behave like solids

Dec 10, 2013 by Lisa Zyga feature
(First row) SEM topography images of 1-mm drops of mercury resting on three surfaces of increasing roughness. The third surface is super-mercury-phobic. (Second row) Images of mercury drops during their detachment from these surfaces. While the drops deform considerably on the first two surfaces, on the third surface the drop deforms very little. (Third row) Force data during compression and detachment cycles show a large force hysteresis on the first two surfaces, while the hysteresis is almost absent on the third one. This behavior is similar to that of solids, but very unusual for liquids. Credit: Escobar and Castillo. ©2013 American Physical Society

(Phys.org) —When a rubber ball and a droplet of water are compressed onto a solid surface, they behave very differently. For the ball, the compression process is reversible, so the ball retains its original form when decompressed. In contrast, the compression process for the water droplet is irreversible, and the droplet's contact angle with the surface irreversibly changes because of the way the droplet interacts with the surface's chemical or physical inhomogeneities.

But now in a new study, physicists have shown that a droplet of liquid can undergo a reversible compression process like a solid object does, as long as the surface it interacts with is "super-mercury-phobic." Such a surface is very resistant to mercury, so the mercury droplet does not spread out like a typical liquid droplet does.

The physicists, Juan V. Escobar and Rolando Castillo at the National Autonomous University of Mexico in Mexico City, have published a paper on how a liquid can behave like a solid in a recent issue of Physical Review Letters.

"On one hand, we have developed a novel technique with huge potential to study wetting in general and in particular the force of adhesion between a liquid and a solid, and on the other hand we helped bridge two apparently separate areas of physics (surface physics and mechanics)," Escobar told Phys.org. "From a more fundamental point of view, it could be said that our results show how Nature does not care about the specific source of the restoring force in a process of compression: as long as it enters the energy equation in mathematically similar form, the phenomenology will be the same.

Normally, the compression of a liquid droplet onto a is a hysteretic process, meaning that the droplet's contact angle depends on its compression history. However, previous studies have predicted that the contact angle hysteresis can disappear under certain conditions, essentially making the compression process reversible.

Here, the physicists experimentally confirmed this prediction by compressing mercury droplets onto different types of surfaces. On rough surfaces, the droplets still exhibit contact angle hysteresis, but the droplets on the super-mercury-phobic surface do not. The researchers attribute the vanishing contact angle hysteresis to an extremely low surface energy between the droplet and the surface.

Along with this finding, the researchers made an unexpected discovery: even though the mercury droplet's hysteresis has vanished, it still has a small but measurable adhesion force, which is also independent of its compression history.

Taken together, these two observations mean that the mercury droplet behaves like an elastic solid during a repeated compression-decompression process. The researchers explain that this behavior occurs because the dewetting of a liquid can be thought of as the equivalent of the detaching of an elastic solid. These results agree with a theoretical model in which the surface tension of a liquid is the counterpart of the restoring force of an elastic solid. The experiments could have applications for further investigation of a variety of behavior.

"Our instrument can be used to study the dynamic wetting of a wide variety of liquids and surfaces," Escobar said. "In particular, it can be used to study the dynamic formation of the so called 'pinning points' that make the contact line stuck (or pin) on the (this study is underway). It can also be used to study the phenomenon called non-plastic ageing (this study is also underway). Also, our instrument could be used with polymers as well."

Explore further: Can perovskites and silicon team up to boost industrial solar cell efficiencies?

More information: Juan V. Escobar and Rolando Castillo. "Force of Adhesion Upon Loss of Contact Angle Hysteresis: When a Liquid Behaves Like a Solid." PRL 111, 226102 (2013). DOI: 10.1103/PhysRevLett.111.226102

add to favorites email to friend print save as pdf

Related Stories

Water droplets prefer the soft touch

Jun 25, 2013

(Phys.org) —Researchers have found a way to drive water droplets along a flat surface without applying heat, chemicals, electricity, or other forces: All that's required is varying the stiffness of the ...

Stabilisation of microdroplets using ink jet process

Jul 31, 2013

Progress means that many things that are used in everyday life are becoming more manageable, practical and generally smaller. This also applies to biological and chemical experiments. To save material and ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.