Johns Hopkins APL will launch RAVAN to help solve an earth science mystery

Dec 10, 2013
Artist rendering of the Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) satellite, a new, low-cost cubesat mission led by the Johns Hopkins Applied Physics Laboratory in Laurel, Md. RAVAN will demonstrate technology needed to measure the absolute imbalance in the Earth's radiation budget for the first time; the cubesat is scheduled for launch in 2015. Credit: JHU/APL

(Phys.org) —A new, low-cost cubesat mission led by the Johns Hopkins Applied Physics Laboratory in Laurel, Md., will demonstrate technology needed to measure the absolute imbalance in the Earth's radiation budget for the first time, giving scientists valuable information to study our climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) satellite, scheduled for launch in 2015, will demonstrate how accurate and wide-ranging measurements of Earth's outgoing radiation can be made with a remarkably small instrument. The RAVAN team includes partners at Draper Laboratory in Cambridge, Ma.; L-1 Standards and Technology in New Windsor, Md.; and NASA's Goddard Space Flight Center in Greenbelt, Md.

"Under stable conditions, the energy from the sun reaching the top of Earth's atmosphere and that being reflected or radiated to space are equal," explains Bill Swartz, an atmospheric scientist at APL and RAVAN principal investigator. "There is substantial evidence that they are not equal, and that difference is known as Earth's radiation imbalance (ERI). It's a really small number—a difference thought to be less than one percent—but that imbalance drives the future of climate change. RAVAN will demonstrate how ERI can be unambiguously and affordably quantified from space, enabling a huge leap in our ability to predict the future climate."

RAVAN will use a small, accurate radiometer, developed at L-1 Standards and Technology and not much larger than a deck of cards, to measure the strength of the Earth's outgoing radiation across the entire spectrum of energy—from the ultraviolet to the far infrared. "ERI is too small to be measured by previous, current or planned future space assets," says co-investigator Warren Wiscombe, a climate scientist at Goddard.

The secret to RAVAN's precise measurements is a "forest" of carbon nanotubes, grown at APL, that serve as the radiometer's light absorber. "The carbon nanotubes are a very deep black across the energy spectrum, which will let the radiometer gather virtually all the light reflected and emitted from the planet," says Swartz.

RAVAN represents the first step toward a constellation of cubesats, each no larger than a loaf of bread, that would provide global coverage of Earth's total outgoing radiation throughout the day and night, and data to answer long-standing questions about the Earth's climate future.

"RAVAN is unique because it's not only a technology demonstration but a manufacturing and economic demonstration," says Draper Laboratory's Lars Dyrud, RAVAN project lead. "Resolving climate uncertainty and improved prediction of future requires 30 to 40 RAVAN sensors. The cubesat revolution and advanced manufacturing offer the best hope for affordably achieving these urgent goals." Draper Laboratory is responsible for process engineering for RAVAN, with the goal of ensuring that the instrument design can be manufactured in a cost-effective manner.

RAVAN is the first Earth science cubesat built by APL. It is part of the Lab's ongoing development and refinement of these small, adaptable and cost-effective platforms for operational use. APL's first two cubesats carried technology demonstration payloads, and launched Nov. 19, 2013, aboard a Minotaur rocket from Wallops Island. The RAVAN mission is sponsored by NASA's Earth Science Technology Office, located at Goddard.

Explore further: Cubesats test new hardware and software technologies

add to favorites email to friend print save as pdf

Related Stories

New solar instrument reaches orbit

Nov 21, 2013

An instrument that measures the sun's energy output is in orbit after it was launched last night on the U.S. Air Force's Space Test Program Satellite-3. The satellite was aboard a Minotaur I rocket that launched ...

NASA's latest space technology small satellite phones home

Dec 06, 2013

PhoneSat 2.4, NASA's next generation smartphone cubesat has phoned home. The tiny spacecraft that uses an off-the-shelf smartphone for a brain has completed checkout and sent back data confirming all systems are "go" for ...

New climate-studying imager makes first balloon flight

Oct 31, 2013

Understanding Earth's dynamic climate requires knowledge of more than just greenhouse gases. One of the key measurements scientists measure is reflected solar radiance, or the amount of outgoing sunlight ...

Recommended for you

Getting to the root of the problem in space

2 hours ago

When we go to Mars, will astronauts be able to grow enough food there to maintain a healthy diet? Will they be able to produce food in NASA's Orion spacecraft on the year-long trip to Mars? How about growing ...

The difference between CMEs and solar flares

4 hours ago

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explain ...

Scientific instruments of Rosetta's Philae lander

4 hours ago

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

How ancient impacts made mining practical

6 hours ago

About 1.85 billion years ago, in what would come to be known as Sudbury Canada, a 10 kilometer wide asteroid struck with such energy that it created an impact crater 250 kilometers wide. Today the chief industry of Sudbury ...

User comments : 0