Johns Hopkins APL will launch RAVAN to help solve an earth science mystery

Dec 10, 2013
Artist rendering of the Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) satellite, a new, low-cost cubesat mission led by the Johns Hopkins Applied Physics Laboratory in Laurel, Md. RAVAN will demonstrate technology needed to measure the absolute imbalance in the Earth's radiation budget for the first time; the cubesat is scheduled for launch in 2015. Credit: JHU/APL

(Phys.org) —A new, low-cost cubesat mission led by the Johns Hopkins Applied Physics Laboratory in Laurel, Md., will demonstrate technology needed to measure the absolute imbalance in the Earth's radiation budget for the first time, giving scientists valuable information to study our climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) satellite, scheduled for launch in 2015, will demonstrate how accurate and wide-ranging measurements of Earth's outgoing radiation can be made with a remarkably small instrument. The RAVAN team includes partners at Draper Laboratory in Cambridge, Ma.; L-1 Standards and Technology in New Windsor, Md.; and NASA's Goddard Space Flight Center in Greenbelt, Md.

"Under stable conditions, the energy from the sun reaching the top of Earth's atmosphere and that being reflected or radiated to space are equal," explains Bill Swartz, an atmospheric scientist at APL and RAVAN principal investigator. "There is substantial evidence that they are not equal, and that difference is known as Earth's radiation imbalance (ERI). It's a really small number—a difference thought to be less than one percent—but that imbalance drives the future of climate change. RAVAN will demonstrate how ERI can be unambiguously and affordably quantified from space, enabling a huge leap in our ability to predict the future climate."

RAVAN will use a small, accurate radiometer, developed at L-1 Standards and Technology and not much larger than a deck of cards, to measure the strength of the Earth's outgoing radiation across the entire spectrum of energy—from the ultraviolet to the far infrared. "ERI is too small to be measured by previous, current or planned future space assets," says co-investigator Warren Wiscombe, a climate scientist at Goddard.

The secret to RAVAN's precise measurements is a "forest" of carbon nanotubes, grown at APL, that serve as the radiometer's light absorber. "The carbon nanotubes are a very deep black across the energy spectrum, which will let the radiometer gather virtually all the light reflected and emitted from the planet," says Swartz.

RAVAN represents the first step toward a constellation of cubesats, each no larger than a loaf of bread, that would provide global coverage of Earth's total outgoing radiation throughout the day and night, and data to answer long-standing questions about the Earth's climate future.

"RAVAN is unique because it's not only a technology demonstration but a manufacturing and economic demonstration," says Draper Laboratory's Lars Dyrud, RAVAN project lead. "Resolving climate uncertainty and improved prediction of future requires 30 to 40 RAVAN sensors. The cubesat revolution and advanced manufacturing offer the best hope for affordably achieving these urgent goals." Draper Laboratory is responsible for process engineering for RAVAN, with the goal of ensuring that the instrument design can be manufactured in a cost-effective manner.

RAVAN is the first Earth science cubesat built by APL. It is part of the Lab's ongoing development and refinement of these small, adaptable and cost-effective platforms for operational use. APL's first two cubesats carried technology demonstration payloads, and launched Nov. 19, 2013, aboard a Minotaur rocket from Wallops Island. The RAVAN mission is sponsored by NASA's Earth Science Technology Office, located at Goddard.

Explore further: Team wins Cubesat berth to gather earth energy imbalance measurements

add to favorites email to friend print save as pdf

Related Stories

New solar instrument reaches orbit

Nov 21, 2013

An instrument that measures the sun's energy output is in orbit after it was launched last night on the U.S. Air Force's Space Test Program Satellite-3. The satellite was aboard a Minotaur I rocket that launched ...

NASA's latest space technology small satellite phones home

Dec 06, 2013

PhoneSat 2.4, NASA's next generation smartphone cubesat has phoned home. The tiny spacecraft that uses an off-the-shelf smartphone for a brain has completed checkout and sent back data confirming all systems are "go" for ...

New climate-studying imager makes first balloon flight

Oct 31, 2013

Understanding Earth's dynamic climate requires knowledge of more than just greenhouse gases. One of the key measurements scientists measure is reflected solar radiance, or the amount of outgoing sunlight ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

1 hour ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

2 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

2 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

22 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

Apr 16, 2014

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

User comments : 0

More news stories

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...