Image: Mystery mounds on Mars

December 13, 2013
Credit: ESA/DLR/FU Berlin (G. Neukum)

Intriguing mounds of light-toned layered deposits sit inside Juventae Chasma, surrounded by a bed of soft sand and dust.

The origin of the chasma is linked to faulting associated with more than 3 billion years ago, causing the chasma walls to collapse and slump inwards, as seen in the blocky terrain in the right-hand side of this image.

At the same time, fracturing and faulting allowed subsurface water to spill out and pool in the newly formed chasm. Observations by ESA's Mars Express and NASA's Mars Reconnaissance Orbiter show that the large mounds inside the chasma consist of sulphate-rich materials, an indication that the rocks were indeed altered by water.

The mounds contain numerous layers that were most likely built up as lake-deposits during the Chasma's wet epoch. But ice-laden dust raining out from the atmosphere – a phenomenon observed at the poles of Mars – may also have contributed to the formation of the layers.

While the water has long gone, wind erosion prevails, etching grooves into the exposed surfaces of the and whipping up the surrounding dust into ripples.

Colour-coded topography map of Juventae Chasma. White and red show the highest terrains, while blue and purple show the deepest. The floor of Juventae Chasma sits some 5.8 km below the surrounding plateau. It is filled with sand in the southern part (left), which takes on a smooth appearance, in contrast to the northern (right) part of this image where many blocky rock fragments have slumped down from the chasma walls. Two large mounds of layered material sit inside Juventae Chasma and comprise minerals altered by water. This region was imaged by the high-resolution stereo camera on ESA's Mars Express on 4 November 2013 (orbit 12 508), with a ground resolution of 16 ms per pixel. The image centre is at about 4°S / 298°E. Credit: ESA/DLR/FU Berlin (G. Neukum)

The image was taken by the high-resolution stereo camera on ESA's Mars Express on 4 November 2013 (orbit 12 508), with a ground resolution of 16 m per pixel. The image is at about 4°S / 298°E.

Explore further: Just how low can Mars go?

Related Stories

Just how low can Mars go?

October 8, 2010

There are few places on Mars lower than this. On the left of this image, the floor of Melas Chasma sinks nine kilometres below the surrounding plains. New images from ESA’s Mars Express highlight the complex history ...

Image: Chasma Boreale, Mars

March 20, 2011

(PhysOrg.com) -- Chasma Boreale, a long, flat-floored valley, cuts deep into Mars' north polar icecap.

Mars' northern polar regions in transition

August 5, 2011

A newly released image from ESA's Mars Express shows the north pole of Mars during the red planet's summer solstice. All the carbon dioxide ice has gone, leaving just a bright cap of water ice.

Martian scars

October 11, 2013

Ripped apart by tectonic forces, Hebes Chasma and its neighbouring network of canyons bear the scars of the Red Planet's early history.

Recommended for you

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.