Hydrogen-powered invasion

December 11, 2013
Salmonella Saintpaul bacteria (dark red)

Although mankind is only just beginning to use hydrogen as an energy source, the concept has been established in nature for a long time. Researchers at ETH Zurich have discovered that the diarrhea-causing bacterium Salmonella uses hydrogen as a source of energy to colonize the intestine.

The intestine is bustling with billions of that aid digestion and keep it healthy. A vast array of microorganisms () colonise the intestine so densely that pathogens do not usually stand a chance of multiplying. However, some pathogens, such as the diarrhoea-causing bacterium Salmonella Typhimurium, still manage to invade this densely populated ecosystem. Researchers at ETH Zurich are a step closer to finding out how they do this trick and discovered where the pathogen obtains the energy from for its attack.

Wolf-Dietrich Hardt, Professor of Microbiology at ETH Zürich, together with his PhD student Lisa Maier, examined which factors play a role in the early stages of a Salmonella attack. During the invasion of the intestinal ecosystem, Salmonella Typhimurium uses an enzyme that helps it to assert itself against microbiota: the hydrogenase enzyme, which converts hydrogen into energy. "Although we already knew that Salmonella Typhimurium can use hydrogen in addition to many other sources of energy, it was not clear which source of energy it used during this early stage of intestinal colonisation," explains Maier.

Theft-based hydrogen economy

Hydrogen is created in the intestine as a chemical intermediate of the microbiota's normal metabolism. "Salmonella therefore operates a theft-based by stealing energy from the microbiota to assert itself," says Hardt. Because the microbiota metabolism of most animals works in a similar way, the pathogen can find the necessary energy source for its initial attack in any new animal host.

Once Salmonella Typhimurium has managed to multiply inside the intestine, the bacterium invades the intestinal tissue and causes infection and diarrhoea. In some cases, Salmonella Typhimurium even finds its way into the bloodstream and internal organs. However, animal experiments have shown that the energy boost from hydrogen does not play an essential role during this process. "Outside the intestinal lumen, Salmonella Typhimurium does not have to create space for itself in a dense community of microorganisms," explains Maier.

The Achilles' heel of intestinal flora

The hydrogenase enzyme is also found in other bacteria, such as Escherichia coli and Helicobacter pylori, which causes stomach ulcers. The researchers therefore suspect that other pathogens also use the produced by as a source of energy. This would make the microbiota's own metabolism an Achilles' heel in the defence against a range of germs.

"The purpose of intestinal flora is to protect against infection. However, we are now seeing for the first time that it can also facilitate infections by serving as an unintentional energy provider," says Hardt. The interaction between microbiota and pathogens is thus more complex than initially thought.

Explore further: Safe clearance of salmonella

More information: Maier L, Vyas R, Cordova CD, Lindsay H, Schmidt TSB, Brugiroux S, Periaswamy B, Bauer R, Sturm A, Schreiber F, von Mering C, Robinson MD, Stecher B, Hardt WD: Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem. Cell Host & Microbe, December 11, 2013. DOI: 10.1016/j.chom.2013.11.002

Related Stories

Safe clearance of salmonella

September 14, 2010

Individuals with an intact complex gut flora are more likely to clear Salmonella after an infection than individuals with an altered, less complex gut flora. This is suggested by results from a mouse model for Salmonella ...

Contact killing of Salmonella by human faecal bacteria

April 23, 2013

Our gut is home to trillions of bacteria, numbering more than the cells in the rest of our body, and these bacteria help us to digest our food, absorb nutrients and strengthen our immune system. This complex bacterial ecosystem, ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.