Splitting water into hydrogen and oxygen using light, nanoparticles

Dec 15, 2013

Researchers from the University of Houston have found a catalyst that can quickly generate hydrogen from water using sunlight, potentially creating a clean and renewable source of energy.

Their research, published online Sunday in Nature Nanotechnology, involved the use of cobalt oxide nanoparticles to split into and oxygen.

Jiming Bao, lead author of the paper and an assistant professor in the Department of Electrical and Computer Engineering at UH, said the research discovered a new and demonstrated the potential of nanotechnology in engineering a material's property, although more work remains to be done.

Bao said photocatalytic water-splitting experiments have been tried since the 1970s, but this was the first to use cobalt oxide and the first to use neutral water under visible light at a high without co-catalysts or sacrificial chemicals. The project involved researchers from UH, along with those from Sam Houston State University, the Chinese Academy of Sciences, Texas State University, Carl Zeiss Microscopy LLC, and Sichuan University.

Researchers prepared the nanoparticles in two ways, using femtosecond laser ablation and through mechanical ball milling. Despite some differences, Bao said both worked equally well.

Different sources of light were used, ranging from a laser to white light simulating the solar spectrum. He said he would expect the reaction to work equally well using natural sunlight.

Once the nanoparticles are added and light applied, the water separates into hydrogen and oxygen almost immediately, producing twice as much hydrogen as oxygen, as expected from the 2:1 hydrogen to oxygen ratio in H2O water molecules, Bao said.

The experiment has potential as a source of renewable fuel, but at a solar-to-hydrogen efficiency rate of around 5 percent, the conversion rate is still too low to be commercially viable. Bao suggested a more feasible efficiency rate would be about 10 percent, meaning that 10 percent of the incident solar energy will be converted to hydrogen chemical energy by the process.

Other issues remain to be resolved, as well, including reducing costs and extending the lifespan of cobalt oxide nanoparticles, which the researchers found became deactivated after about an hour of reaction.

"It degrades too quickly," said Bao, who also has appointments in materials engineering and the Department of Chemistry.

The work, supported by the Welch Foundation, will lead to future research, he said, including the question of why have such a short lifespan, and questions involving chemical and electronic properties of the material.

Explore further: Core / shell photocatalyst with spatially separated cocatalysts for more efficient water splitting

More information: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst, Nature Nanotechnology, DOI: 10.1038/nnano.2013.272

Related Stories

Team sheds new light on solar water-splitting process

Dec 02, 2013

With the help of a new method called "dual-electrode photoelectrochemistry," University of Oregon scientists have provided new insight into how solar water-splitting cells work. An important and overlooked ...

Recommended for you

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

kris2lee
3.8 / 5 (4) Dec 15, 2013
At least some honest reporting.
verkle
2 / 5 (3) Dec 15, 2013
At least some honest reporting.


Yes, this is a good example of a well written science article that includes details.
John92
not rated yet Dec 16, 2013
NICE!

More news stories

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Polymer microparticles could help verify goods

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.