Researchers engineer a hybrid five times more effective in delivering genetic material into cells

Dec 16, 2013

Researchers at the Polytechnic Institute of New York University (NYU-Poly) and the NYU College of Dentistry (NYUCD) have developed a carrier in their lab that is five times more efficient in delivering DNA into cells than today's commercial delivery methods—reagent vectors. This novel complex is a peptide-polymer hybrid, assembled from two separate, less effective vectors that are used to carry DNA into cells.

Results of their study, "Long Term Efficient Gene Delivery Using Polyethylenimine with Modified Tat Peptide," were published in Biomaterials. The findings were the result of a collaborative research project conducted by Dr. Seiichi Yamano at NYUCD and Dr. Jin Montclare at NYU-Poly. The outcome of the study could help researchers better understand gene function and ultimately improve .

Non-viral vectors such as those engineered in this study are used for transfection—the process of introducing foreign genetic material (in this case, DNA called a plasmid) into a cell. The vectors are essentially vehicles that carry the genetic matter into the cell. But transfection is not as easy. Cells are set up to keep things out of the nucleus. Even if the transported plasmid manages to permeate the cellular membrane, the cytoplasm within the cell has safeguards to stop anything from getting into the nucleus.

Traditionally, scientists have engineered viruses to carry out transfection, but viruses are problematic because cells recognize them as foreign and trigger the immune response. Virus transfection is extremely costly and presents numerous difficulties for mass processing. On the other hand, non-viral vectors do not trigger the immune system and are easily manufactured and modified for safe, more effective delivery. Their shortcoming is that they generally are effective only for short periods in transfection, as well as other forms of gene expression.

For this project, Yamano and Montclare paired a modified version of CPP HIV-1 (mTat) with PEI – a non-viral vector particularly effective for delivering oligonucleotides. In combining mTat and PEI, they built a new non-viral vector, more effective than mTat or PEI individually. They tested their reagent vector both in vitro—grown in a Petri dish—as well as for approximately seven months in a living organism—in vivo.

The vector may be used in the future for targeted gene therapy.

Explore further: Dead feeder cells support stem cell growth

More information: www.sciencedirect.com/science/article/pii/S0142961213013501

Related Stories

Redesigned protein opens door for safer gene therapy

Nov 13, 2013

A fusion protein engineered by researchers at KU Leuven combining proteins active in HIV and Moloney murine leukaemia virus (MLV) replication may lead to safer, more effective retroviral gene therapy.

New research may help to design better gene therapy vectors

Oct 07, 2008

(PhysOrg.com) -- Research published by scientists from the University of Reading may offer an insight into ways of making safer and more specific gene therapy vectors. The research, published in the journal Nature Structural an ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.