Home teams hold the advantage

Dec 09, 2013
MSU scientist shows that the home team holds the advantage over visitors -- at least in the plant world. Credit: MSU

The home team holds the advantage over visitors – at least in the plant world. However, a mere handful of genetic adaptations could even the playing field.

In the current issue of the Proceedings for the National Academy of Sciences, Michigan State University researchers and their collaborators found that plant adaptation to different environments involves tradeoffs in performance.

Genetic tradeoffs, in part, explain the rich diversity of species on earth. If all plants could perform well in all climates, the world would have similar flora from the poles to the Equator. Tradeoffs, however, such as protection from freezing temperatures in exchange for growing larger, must be made by plants, limiting the regions where they can flourish.

"A racecar driver in Monaco wouldn't choose the same tires as a postal worker in the Yukon," said Douglas Schemske, co-author and MSU plant biologist. "No single tire does well in all conditions, so drivers must choose the best tires for snow, rain, sand or racing; biological species reflect similar performance tradeoffs."

Schemske and Jon Agren (Uppsala University, Sweden) led the 5-year study that focused on Arabidopsis plant populations in Sweden and Italy. In direct competition, the home plants outperformed their visitors, which supported the notion that home populations are adapted to their local conditions.

Examining the genetic basis of plant performance revealed the locals' home-court secrets. Since Sweden has long, harsh winters, the Swedish plants had freezing tolerance as their major adaptive trait. The Italian plants, racing to beat hot, dry summers, devoted much of their energy to flowering in the spring ahead of the heat.

The long-held view the scientists dispelled, however, was that it takes many genes to fuel the adaptations that allow the to thrive in different climates.

"Even though the environments of Sweden and Italy are vastly different, we found that only 15 regions of the plant's genome are involved in adaptation," Schemske said. "The interdisciplinary and international effort it took to identify the ecological and of adaptive tradeoffs underscores the value of long-term experiments such as this."

The genetic mechanisms that allow these adaptations have relevance to understanding biodiversity, growing crops in varying climates and projecting the impacts of global change.

With that in mind, Schemske and his colleagues will focus future research on identifying the full spectrum of traits and genes required for adaptation.

Christopher Oakley, MSU postdoctoral researcher, and scientists from Colorado State University also contributed to the study.

Explore further: Bloom or bust as new study reveals the plants most likely to survive climate change

More information: Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana, www.pnas.org/cgi/doi/10.1073/pnas.1316773110

Related Stories

Grazers and pollinators shape plant evolution

Oct 21, 2013

It has long been known that the characteristics of many plants with wide ranges can vary geographically, depending on differences in climate. But changes in grazing pressure and pollination can also affect the genetic composition ...

Using genes to rescue animal and plants from extinction

Sep 25, 2013

(Phys.org) —With estimates of losing 15 to 40 percent of the world's species over the next four decades – due to climate change and habitat loss, researchers ponder in the Sept. 26 issue of Nature whether science should ...

Cushion plants help other plants survive

Feb 18, 2013

Alpine cushion plants help other plants in harsh mountain environments to survive. This is shown by new research involving researchers from the University of Gothenburg, Sweden, the results of which are now ...

Recommended for you

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0