Researchers demonstrate high-energy betatron X-rays

Dec 18, 2013 by Breanna Bishop
LLNL researchers Felicie Albert (center) and Bradley Pollock (far right) prepare the Callisto laser system and setup for betatron X-ray experiments at the Lab's Jupiter Laser Facility.

(Phys.org) —A Lawrence Livermore team, along with researchers from the University of California at Los Angeles and SLAC National Accelerator Laboratory, has recently produced some of the highest energy betatron X-rays ever demonstrated, with the added benefit of being produced on a system the size of a large tabletop.

Betatron X-ray radiation, produced when relativistic electrons are accelerated and oscillate in a laser-driven plasma channel (during a process known as laser-wakefield acceleration), is an X-ray source holding great promise for future high energy density (HED) . X-rays produced in this manner are femtosecond in duration, directional, spatially coherent and broadband, making them highly attractive as a probe.

"This source could someday be an alternative to X-ray synchrotrons and free electron lasers. These machines are expensive, complex, and kilometers in length," said lead author Felicie Albert. "As a result, few of these exist worldwide, and their size prevents their use as mobile systems or as diagnostic tools in conjunction with other large-scale HED drivers, such as the National Ignition Facility."

The experiments were performed at LLNL's Jupiter Laser Facility, using the 200-Terawatt Callisto laser system. By focusing Callisto's 60 femtosecond laser pulse onto a gas cell filled with helium, the researchers produced up to 80 kiloelectronvolts of betatron X-rays and measured for the first time the angular dependence of betatron X-ray spectra in a laser-wakefield accelerator.

"We hope to use this remarkable X-ray tool to explore the properties of high energy density plasmas at femtosecond resolution and at the atomic level, which are poorly understood at present," Albert said. "Many applications beckon on the horizon, as these X-rays could be used in any research involving X-ray synchrotron or radiation. It could be used to discover new physical properties of materials at the high pressures and temperatures found only in planet interiors and fusion plasmas."

Albert was joined by LLNL's Bradley Pollock, Joseph Ralph, Yu-Hsin Chen, David Alessi and Arthur Pak and collaborators from the UCLA Department of Electrical Engineering and the SLAC National Accelerator Laboratory. This work, supported by the LLNL Laboratory Directed Research and Development program, was reported in the Dec. 6 issue of Physical Review Letters.

Explore further: Giant virus revealed in 3-D using X-ray laser

More information: "Angular Dependence of Betatron X-Ray Spectra from a Laser-Wakefield Accelerator." F. Albert, B. B. Pollock, J. L. Shaw, K. A. Marsh, J. E. Ralph, Y.-H. Chen, D. Alessi, A. Pak, C. E. Clayton, S. H. Glenzer, and C. Joshi. Phys. Rev. Lett. 111, 235004 (2013). DOI: 10.1103/PhysRevLett.111.235004

Related Stories

Novel X-ray device developed

Nov 24, 2013

Using a compact but powerful laser, a research team at the University of Nebraska-Lincoln has developed a new way to generate synchrotron X-rays.

Omega Laser Facility completes record 25,000 experiments

Nov 05, 2013

The National Nuclear Security Administration (NNSA) today announced that the Omega Laser Facility, a national user facility for NNSA that is located at and operated by the University of Rochester's Laboratory for Laser Energetics ...

New X-ray tool proves timing is everything

Feb 20, 2013

(Phys.org)—With SLAC's Linac Coherent Light Source X-ray laser, timing is everything. Its pulses are designed to explore atomic-scale processes that are measured in femtoseconds, or quadrillionths of a ...

Recommended for you

Giant virus revealed in 3-D using X-ray laser

2 hours ago

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator ...

Magnetic vortices in nanodisks reveal information

2 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

Breakthrough in OLED technology

20 hours ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

23 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

DonGateley
not rated yet Dec 18, 2013
I thought a betatron was an electron accelerator where the beam is circular ring in a vacuum torus gaining energy as the secondary of a transformer? At least that's what it was when I was night operator for the 300 mev machine at the University of Illinois back in '62.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.